AD=A112 801 NAVAL POSTGRADUATE SCHOOL MONTEREY CA
DYNAMIC PLANNING AND CONTROL OF SOFTWARE MAINTENANCE: A FISCAL —-ETC(U)
DEC 81 J F GREEN: B F SELBY

UNCLASSIFIED

o

IIIIIZ Il

N
U

Il

'x:

I

uu
|

s

]
(@]

ow

o |l

lll

el

4

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

3;13

/J’D K ~ g
t'*.:) AN

WA 11

i
H
sk

DTIC
Y ECTES
-5/ '

THESIS °

DYNAMIC PLANNING AND CONTROL
OF SOFTWARE MAINTENANCE:
A FISCAL APPROACH

by
James F. Green
Brenda F. Selby

Thesis Advisors: Lyle A. Cox Jr.

Danial C. Boger

Approved for public release; distribution unlimited

SECUMTY CLASBIFICATION OF TiiIS PAGE hen Date Enterew)

READ INSTRUCTIONS
A (L AECTT] 7. GOVY ACCESSION NOJ 3 RECIPIENT'S CATALOG NOMBER

4

A} . A
I

& TITLE (and Subtitle)

DYNAMIC PLANNING AND CONTROL
OF SOFTWARE MAINTENANCE:
A FISCAL APPROACH

S TYRE OF RESOAY & PEMOD COVERED
Master's Thesis

December 1981
6. PERFOAMING ORG. ACPOAT NUMBER

Y. AYUTHOR'e)

James F. Green

Brenda F. Selby

. CONTWACT OR GRANT NuMBER/s;

[P iRPORMING ORGANIZATION NAME ANO AGDRESS
Naval Postgraduate School

Monterey, California 93940

Q. PROGRAM ELEMENT PROJECT TASK
AREA & WORK UNIT nuu.lESS s

11 CONTROLLING OFPICE NAME AND ADDAESS
Naval Postgraduate School

Monterev, California 93940

12. AEPORT DATE

December 1981

13. NUMOF® 2F PAGES

128

tram C tling Otfice) 18. SECURITY CLASS. (ef thie repert)

TTT uonITOMNG AGENCY NAME & ADORESNI! &

Unclassified

18a. DECLASSIFICATION: DOWNGARADING
L SCHEDULE

6 OISTRIBUTION STATEMUNT (of this Repert)

Approved for public release, distribution unlimited

17. DISTRIBUTION STATEMENT (of (Ne sbetrest entored In Bleek 20, 1 ditferent fvam Repeort)

9. SUPPLEMENTAARY NOTES

Software Maintenance
Software Life-cvcle
Software Evolution
Software Macroestimation
Software Microestimation

19. XEY WORDS (Caniinue an revevse side || nesescary avd idoniily by blosk number)

costs.

20. ABSTRACT (Continue an reverse side II nosossary and i@sniily by blosk manber)

. Until recently, much of the budget planning for software svstems has been
primarily targeted at costs incurred during the development phase.
with increasing software svstem life span and complexitv, maintenance costs
nave become a more prevalent concern.
for design errors and evolutionarv maintenance, post-deliverv investment in
software svstems now requires a greater proportional share of the life-cvele

In this research, various methodologies and svstem factors relating

to software cost accounting are reviewed with the intent of developing o coct

However,

As a result of necessary corrections

DO ,ony 1473

S/N 0102-014-6601

COITION OF | NOV 6818 OBSOLRTR

SECUMITY CLASBIPICATION OF Tuis BAGE When Dova Bntereq)

i _aa

=¢u~'v ‘i A0MPICHTION OF Twib B aQgl/Togn Nece Satesnd

¥

20. (continued)

~control model for arriving at a well-structured view for the management of the
maintenance phase of the software life~cvcle. The model proposed embodies a
planning concept for establishing a maintenance strategy and a control concept
for analyzing manloading requirements during the maintenance phase.

Averoaln toT
- ——
v ol '

- -4
Distrivition/ o
Availatlitty Codes N

Avatl and/or
Dist Special

-

to

DD 52"“’« 1473
s/ N 0182n14-6601

SECUMTY CLASHIMCATION OF TuiS PAaR(When Dere 2nrered)

Approved for public release, distribution unlimited

Dynamic Planning and Control of Software Maintenance:

A Fiscal Approach

by

James F. Green
Lieutenant Commander, United States Navy
B.S., University of Utah, 1971

and
Brenda F. Selby

Lieutenant, United States Navy
B.S., Eastern Kentucky University, 1974

Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN INFORMATION SYSTEMS
from the

NAVAL POSTGRADUATE SCHOOL
December 1981

Authors:

~ v ' Co-Advisor
N C

Co-Advisor

of Administrative Sciences

~ S e
Dean ot Intormation and Policy Sclences

ABSTRACT

Until recently, wmuch of the budget planning for software
systams has been primarily targeted at costs incurred during
~he development ghase. However, with increasing softuware
system life span and complexity, maintenance costs have
becom2 a mcre prevalent ccrncern. As a result of necessary
corrections for design errors and evolutionary maintemance,
post~delivery investment in software systeams now raguirss a
greater proporticnal share cf the life~cycle costs. In this
research, various methodologies ard system factors relating
o software cost accounting are reviewed with the intent of
developing a cost ccentrcl amodel for arriving at a
well-structured view for the management of the maintenance
phase of the scftvare life-cycle. The wmodel proposed
2mbodiss a planning concept for establishing a maintenance
strategy and a control concept for acalyzing manloading

requirements during the maintenance phase.

ey

4 TABLE OF CONTENIS

Io INTRCDUCTICN - . o L] . . - . . . e e e e . 3 . » . 12
AQ THB PRCBLEU . . . - L] L} - L] L] . [L] L] . - L3 . 12

BC BACKGRCUND L] L] L] L] . L - L] - L] L] L] L] - . L d L] - 13

C. RESEARCH METHODOLOGY . o « « « o o o o o« « « o« 18
1. Literature S@ALCh ¢ « « ¢ ¢ « o o o« o« « o« 18

2. Telephone Conversatiods . « « « « « « - » 18

D. ORGANIZATICN OF THE THESIS . « ¢ « o « ¢ « o « 19

II. QUANTIPYING SOFTWARE MAINTENANCE « ¢« ¢ « ¢ o o o« o 21
A. THE SOFTWARE PROBLEM . . ¢ ¢« ¢« ¢ o ¢ o « « « o 21

B. THE SOFTWARE LIFE-CYCLE . . . ¢ o ¢ o o o o« « 23

C. LIFE-CYCLE INTERRELATIONSHIPS . . . « . « o . 30

D. SOPFPTWARE EVOLUTION . . o & o o « o o o s o o o 34

B, PRODUCTIVITY . « ¢ o o « o o s s o o o « « o« o 38

F. COMPLEXITY METRICS . . . « « o« & o o « o = o« o« 45

1. Halstead'sS E o« ¢ o o ¢ o o ¢ o o « ¢« o o o U6

2. HMcCabe's V(G) o« o « o o s o o o« o o« = o o« 48

5. ERROR EREDICTION 4 o o o o o o o « o s « o « o 49

H. CHAPTER SUMMARY =« &+ ¢ « « o o o « o« o o o o & 55

III. COST ESTIMATION CF SOFTWARE MAINTENANCE 56

A. SOFTWARE COST ESTIMATING MODELS . . « . « + .+ 58

1. Putnam's Software Cost Estimating Model . 58

a. Description . . ¢ + ¢ e 4 4 o ¢« <« o . 58
b. Application to Maintenance Costing . . o4
2. Army Macroestimating Model 67
a. Description +« ¢ ¢ ¢« ¢ .+ s « o 68
(1) Case I: System already under
development (resources budgeted). 70
(2) Case II: New systea (noc resource

data) . . e & @ . . e e e e 71

b. Application to Maintepnance Costing . . 73
B. SOFTWARE EVOLUTION MODEL . . + ¢« « o« o« ¢« » o « 15
1. Lehman~Belady Model ¢« « « ¢« . . 15 ;

a. Description . . L] L] L L] L] L] . - L] L d L] 75 3

b. Application to Maintenance Costing . . 78 ‘

2. Parr Mcdel+ . + e ¢ o e o + 2 s e o 19

a. Description . . ¢« ¢ ¢ ¢ e ¢ ¢ 4 . . o 19

b. Aprlication to M¥aintenance Costing . . 33

C. CHAPTER SUMMARY .« ¢« « ¢ ¢ o o ¢ o o o » 2 « o B4

Iv. MANAGING SCPTWARE MAINTENANCE COSTS . . . « « « « 85
A. PLANNING CONCEPT « « ¢ « o o « o« o o s o« o« s o« 86

1. Project Manage®eNt . « « « ¢« « « o o« « « o B6

2. Objectives of the Ma:ntenance Concept . . 36

3. Establishing the Mdaintenance Policies. . . 87

a. Category I - No Management Ccntrel . . 38

}

L b. Category II - Permanesnt Suppor:t Level ;
! with Periodic Redevelopment 38 §

c. Category III - Error Repair with Major
ChaNgeS « « o ¢ o o o o o o o« » « o« o 88

d. Category IV - Error Repair Only with
Pericdic Redesigr . . . « . « « + o . 89
4, Mapagement SLIUCLUTE ., ¢« « » o « « « = « « 89
5. System Life-cycle Objectives « . 90
B8, CONTRCL CCNCEPT . ¢ ¢ ¢ o ¢ s o o o o e o« s « 92
1. Otjective of Mainrtenance Control 92

2. Model Deriviation . ¢ ¢ ¢ « o s « o« ¢ o « 95

a. Macro Technijue . . « ¢ o o « o ¢ « « 95
b. Micro Technique . ¢« « « v ¢ « « « « 100
3. Sample Application .« . « ¢« ¢ ¢ « v o « o 100
a. Sapple Data . « o« ¢ o o « o o« o « « 100
b. Computational algorithm 102
c. Mapagement Adpplications 102

(1) Determining Maintenance Support
Level. . . . ¢« ¢ ¢ ¢ ¢ ¢ ¢« « o 103

(2) Forecasting Rescurce

Distribution. +« « ¢« ¢ ¢ o« o « o« 104

(3) Monitoring Configuration

Centrol. .« & ¢ & ¢ ¢ ¢ = o » « 106

C. CHAPTER SUMMARY . ¢ o« ¢ ¢ « o ¢ e ¢ o o o « 109

V. SUMMARY, CCNCLUSIONS, AND RECOMMENDATIONS . . . 110
A. SUMMAEY . o ¢ ¢ o o o o o o 2 o s o o o « « 110

B, CONCLUSION &+ « ¢ o ¢ o a o o o o o o o o « & 112

C. RECOMMENDATIONS . . ¢ « o o o o @ o o o« o & 113
A2PENDIX A ¢ ¢ o ¢ ¢ « o o o o s o« o o o o o o o o o 114

LIST OF REFERENCES .+ o ¢ ¢ o o o « o s o o o o « s « o« 120

INITIAL DISTRIBUTION LIST o« o « « ¢ o o o o o o o« « o o 127

AR A A Sl T AN IR Y

W T T T e

LIST QF IABLES

I. Hypothetical Phase Interrelatiomskhip Trade-offs . 135

II. Laws of E«clution DYynamics ¢« « « o ¢ o ¢ « « « « o 39
III. Successive Execution Times Between Pailures . . . 52
Iv. Hypotheical Project Lata . « o ¢ « & ¢ o o ¢« & o o 56

V. Ordirates for Manpower FURCTioD .« v « ¢ o o« o o« « 72

LIST OF EIGURES

2.1, Software Life-cycle - Composite Schematic . . . 24
2.2. Software Life-cycle . . ¢« ¢ ¢ ¢« ¢ o o« o o o o o 25
2.3, Project Erofile . ¢ ¢ v o ¢ o ¢ o o o o o « o o 27
2.4, Manlcading Profile . . v ¢ o o ¢ o« o o + o o « « 28
2.5, Eccnomic Production CUrve . . . & o o « « « « o 32
2.6. Application of Production Theory . . « « « « « . 33
2.7. Development Release Cycle .'. e o e s o s s o & 37
2.8, Casual Paths of Maintenance Effecrt « . 40
2.9. Categories Of Program Cod€ « « o« o o o o o ¢ o o 42
2.10. Productivity -~ Reused Code Relaticnship . . .« . 43
2.11, Productivity Determinants . .« . ¢ o ¢ ¢ o .0 o o G4
3.1. Size vs. Effort and Time Relaticaship 53
3.2. Typical Pletting Structure . . . « « « &+ o« « o« « 65
3.3, Pi*+ing the Best Straight Line . . « . « ¢« « « .+ 67
3.4. Line Extensicn and Predictica . « ¢« ¢« o« = « « o D8 g
3.5. Milestones Applied to Project Erofile T J
3.6. System Sesource~Control Limits . . . « « « « o« . 75 ;
3.7. Growth FKate Simuletion . « & « ¢ ¢ ¢ ¢« ¢ o ¢« o . 79 i
3.8. SECh CULZVE ¢ &+ ¢ o o o o o o o o o s o o ¢« « o« » 82
4.1, Maintenance LeVels « « ¢« o « o o ¢ o o 4 o + o « 90

4.2, Maintenance dilestcnes in the System Life-cycle 92

Maintenance Tasks in the System Life-cycle
Ncrmalized Rayleigh Curve . . + « o & « &
Plotted Sample Data . . « ¢ 2 « ¢ o o« o« &
Fcrecasting Future Requirements . . « « o

New Release Effect on Maintenance Level .

1M

A. THE PROBLEM

Recent literature is replete with dire predictions about
<he ul+timat2 costs of software amaaintenance, In 1973, costs
0% sof+wvare ian the Urnited States vwere $20 billicn (1] azd

~hey ar2 projected to be $200 Dbiliion in 1985 [2). It cas

[{H]

o2e

o

hypothasized that anywaere froa fcrty <¢c¢ ninety-five

o]

narcent ¢f the manpower effort in typical industrial appli-
ca+tions occurs during the maintenance phase cf tke scfiware
life cycle. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 4]

Although <there are numerous models in existence that
izal with software costs, none deal specifically with the
costs of *pure' gpaintenance during +<he latter pnase of the
software life-cycle. It appears that much of the Pederal
sovernaent and industry tend to use a generali definition of
softvar2 main<enance and treat it as a level of effort on
various <asks rather than that =rffort allocated to specific
-asks. Consequently, these organizations do not —really
Xrow <=he *rues ccsts cf +their software maintenancs.

Tha goal of this work is to investigate the methodology
0€ softwara cost accountiang, and to evaluate and develop a

cost nodel for the predic+ticn of pure software azaintenance

2. 3ACKGRCUND

The *era *Software Maintenance' is very nebulous. De-
partment of Defense Directive 5000.29 alludes to software
naintenance by stating:

“"Correctnass of software, reliability, integrity, wmain-
“3inability, ease of acdification, and t:ansferab;lltx
will be major <considerations in the initial desiga.

{15]
Us2d in +this thesis is a composite definition of software
maintenance to encompass those actions taken by a system
user to re*ain an existing system in, <¢r restore i+ to, an
aperable condition. This includes:

1) coxrections to counteract detected Etugs;

2) enhancemeants to add fupnctions;

3) modifications to delete or change existing functions in
thelr nature or scope;

4) iaplementaticn szra:egy to match_ changed conditions or
raquirements. (16, 17, 18, 19, 20, 21, 22, 23, 24]

Pure*' Maiptepance orn the other hand is restricted %o
that work accomplished during the saintenance phase of the
software life cycle in the pursuit of the following goals:

1) Relialibility of Software - the ability of %“he sortware
to produce consistent results whenever the customer
uses the precduce;

2) Zrrcor Corzection - changes made tc counteract errors.
Th2 priority of cerrection is directly related to the
seriousness cf the error;

3) Softwarsz Maintaipability - extending the useful life of
a program Ly untangling a2 @messy crne, generalizing a
specific cne, cr annotating an uhreadable ons.

13

Rcbert Glass [25] defines the best software maintenance
as no maintenancs at all. That is, no changes are needed be-
cause no errers were committed and all changes wvere antici-
pated. He then goes on tec list six attributes of software
naintenance:

1) Maintenance is irntallectually verg difficul=. Problens
canno* be bcunded. The cause cculd te anyvhere.

2) Maintsnance is technically very difficult. Probieas
cannot be specialized. They could surface because of
errors in the coding, design, architecture, cr concept.

3) Maintenance is unfair. Usually the person who is amain-
talning a prnduct did not write it_and must interpret
what the original author meant. Documentation s in-
adaquate most of the time.

4) Maintenarnce is nc-win. People only come to maintenance
with rprotlems.

5) Maintanance 1is iafamous. There 1is very little glory,
aoticeaple prograss, cr chance for 'success'.

6) Maintenance lives in the pasz. The zeneral.qualzty of
code being maintained is often terrible. This is par<-
ly becausé it was «created whea everybody's understand-
ing of software was mcre rudimentary and partliy be-~
cause a great deal of code 1is produqeé by people before
+hey beccae really gcod at programaing.

Rasearchers dc¢ not apgear to be using the same defini-
+ion when working on the costs of maintenance. Those who es-
~=ima=2 majintenance costs to be near forty percent of liife-
cycle costs seem %o be using a definiticn closer to that of
'burs' maintenance while those who estimate maintenance as

nigh as ninety-five fercent are obvicusly using a very

14

general definiticn, Accerding to r€cent surveys, mos<t
(seventy *to eighty-eight G[parcent) maintenance effort is
spent modifying software to accomodate changes and to im~-
prova sof*ware performance crather than to correct errors
which ware not discovered during systems developament. {zs,
27, 281 These surveys have been substantiated by analyses
done on three large scale systems:

1) Pacific Telephone - Service Order Retrieval and Distri-
bution Systea;

2) Bell Telephone laboratories ~ Autcmated Repair Service
Bureau Systen;

3) VISA, Inc. - Base II World wide Credit Card Transaction
Interchange System. [29)

Although hardware ccsts have decreased by over <two
orders of magnitude and programmer Fproductivity has in-
creased by one order of magnitude in the last ten years, the
ro%al costs cf systems are continuing to rise wit the
grea“est portion of effort and <cost spert after development
comgletion [30]. There appear %to pe four primary Ieasons
for this phenocmenon:

1) Mainterance is people intensive;
2) The number c¢f systems has increased substantially;
3) The mission of the software seems to be expanding;

4) Average s¥stem life has increased froam three years ia
33?0 .g] ive years ia 1970 to eight yeacs In 1980.
[4

15

A recent DOD study reports that develogpaent costs for

Air Force avionics software averaged 375 per instruction
vhile maintenance costs 1lie in the range of $4,000 per in-
struction [33] This indicates that ninety-eight percent of
the life-cycle <costs of that system are spent cn software
naintenance, Ancther study concludes <that fifty percent of
-he cos*%s for Navy Airborpe Antisubmarine Warfare Tactical
Software is spent on maintenance software [34]. As one can
see, there are many different meanings ¢f the tera 'software
aaintenance' and as many different assessments of its cost.

The software industry does not appear to be unified in
its approach to decreasing <the high <ccst of maintenance.
McClure states:

"A solution that focuses upcn the production phases of the
software life cycle does not address the major portion of
the wmaintenance <ffort... de must dzrectl{ address
nain+tenance issues rather than hope that they wlll disap-
pear by improving the developament precess.™ (35]

Most of the literature expounds the theory that, to be dorne
properly, software maintesnance should ke a conscious goal
from the beginnirg cf +the software development process.
Main%enance is all too often left out of planning considera-
~ions and then treatsd as a helter-skelter, uacoordinatszd
activicy rather ¢than a planned, methodical, controlied nec-

essary business function [36]. Long term planning, just as

16

in cther disciplines, includes the provision of appropriate
z00ls. There ares %«wo major categories cf tcols for maiate-
nanca. Technical tools encompass such things as coampilers,
~raps and traces, dumps, ccmparators, editcrs, reforaatters,
and preprocessors. Administrative tools include fproblea re-
por+ing vehicles, sta*us reporting vehicles, and documerta-
*ion systeams. {37, 38, 39]

Even with the knowledge and use of these tools, produc-
«ivity, which is typically measured in software lines of
code (SLOC) is substantially lower for wmaintenance prograa-
mers than fcr developmant rrogrammers. According <o Daly,
aaintenance productivity can be as low as twenty percent of
development productivity (40]. There appear t¢ Dbe three
main reasons fcr this phencmenon:

1Y There is a stigma attached %o the 30b of software
aaintenance. Management rarcly rewvwards gccd work ia
doing waintenance as generously as Jood work in doxng
developament., Both coworkers and mana%egent persoane
act as though they hcld maintenance work in low esteen.
To survive, "'every person aust have self respect. If a
job _is not gerce;ved as important, a _person probably
will not perfora %o the best of his abilities.

2) y. maintenance Eersonnel ar€ not intimately fa-
wih <the ccde that, <hey are ass;gned 0 1aia-
] Tygz ally& a maintainer 1s assigned cesponsipil-
for 0,000 sLoCc [41], because “documentation is
te often poor, the ®dintainer nust study the code
tself and try_+o understand what the original davelcp-
ar created and wh¥ he implemented i1t in~ <that amsannerl.
Osually h2 aust s udg a great deal more «ccde than thae
affected area to avoid irnducing bugs in a seemingly un-
related area by the £ix that 1& imflementad.

(a1 82 K=
£t ian
e | s

3) The wrong grade of psople are <typically used to stafi
maintepance efforts [42, 43, 44, 45, 46, 47, 43, 49]
Traditionally, mainténance 2fforts are Jeing sztafired oy
lass experieficad perscnnel than develcpmefit projects.

17

Howaver maintenance personel should e senior people
bacause scftware maintenance is a aicrocosm of the _en-
tirs software developament _progess. The ma;ntalnez does
a sys*ems analysis of a problem arzea ;ead-ug <¢ a re-
quirements definition, Donnlng a designer's hatc tae
malatenance person then outllnes the impact of the
change on the product, Bgzng flexzble individual,
the uainta;ner now codes the e51g solution. After
th2 results of these efforts have Leen tested and veri-
£iag the revised product is finally raxeased to the
wozl The m®maintenance person L also g I a liaison
role w:th the cusztomer by explaining anomalous outputs,
nagotiating changes that are needed as opposed to taose
that ars "desjired, apd interpreting <he computar'’s
unlqua constraintse ds you can -ee, the _person wno
naintains a complex systea sjould be hlghly talanted
and motivated individual. (50, 51, 52] i

C. RESEARCH METHCDOLCGY
1. Llitezature Ssazgh
Manual seéarches and automated systea searches of the

literature showed little had been published in this field.

Although there is a lack of published material tkat deals
directly with a fiscal approach to plamning and control of
software maintanarce, the resea-chers found a great deal
~hat was very useful as background ianformation and which
helped to develcp the theory for the planning and coatrol
aodel.
2. 1Islephcne Cenvegsations
Ef forts to uncover informal sources that deali spe-

2ifically with th

ot

n

costs of 'pure maintenance! failed. The
following organizaticons were contactsed in <the course of the
2search, with no significaat resulcs:

Army Computer Systems Command, Ft. Belvoir, Va.;

DOD Compu%er Inastitute, Washington, D.C.;
18

S Ty

PRGNS ioeetinastoteigiies -

FEDSIM, Washingten, 0.C.;
Homes<-2ad Software Support Pacility, Homestead, Fl.;
IBM Pedaral systeas Division, Gathersburg, 44.;
Kapur Associates, Danville, Ca.;
Natioral Security Agency, T303, Ft. Meade, M4&.;
Naval Securi%y Group Activity, Skaggs Island, Ca.; and
NARDAC San Franciscc, Alameda, Ca.
Maiantenance tracking data, dealing with Goddard

Space Plight Center projects, was oobtaianed from <the Data and

Analysis Center for Software, Griffis AFB, NY. Unfortunate-
ly, the late arrival of the data and fcrmat incompatibility
precluded inclusicn of this daza. ;

Unpublished documents describing a matrix masagement]
arethod of functicnal area analysis developed by dAr. Kyle

Rone, IBM Federal Systems Division, ilouston, Tx. were

obtained and significantly contributsd tc the foraulation of

+~he final model.

D. ORGANIZATICN CF THE THESIS

Ir *~hisg intrcduction +the problem has been stated, its
impor+ance 4discussed, and it has been piac2d4 iz the contex:
of the overall computer system development process. Chaptsar

~4¥o covers various aspects of the problems enccuntered when

19

as-imating/deterairing the cost of software maintenance.
This spacific backgrcund saterial s needed to understand
the models that will be presented in chapters three and
four. Chapter three thoroughly discusses existing models in
*wo arsas: *hnose that work with Norden-Rayleigh curves, and
“hos2 that encompass coamplaxity metrics. Chapter four gives
the authors' model which is based on beth macrc-estimating
(zo*al sys+em) and aicro-estimating (unit composition) tech-
nigues. Pinally, chapter five sumparizes “%e thesis and

puts forth, conclusions and reconmenda® juixs

20

II. GQUANTIFYING SOETIWARE MAINTENANCE

A. THE SOFTWARE FROBLEM

Ther2 are <t¥c main reasons that maintenance has beccme a
predominant cost in scftware systeas. Pirst, the volume of
complet2d systems which require maintcenance dominates the
systems under development as more and mcre long-liived large
systems are completed and delivered. Second, softvare sys-
tems require a ccnsiderably greater prc¢portional irvestaent
in error correction and evclutionary maintenance after de-
livery than other eagineering products.

Numerous technological advances have not solved software
probl ams. They have increased the demard for software, and
opened up cpportunities to use computers in nevw afpplications
which place increasingly severe demands on softvare tech-
nology. Often the tendency is simply to ignore these prob-
lems. Because these problems are both technicai and asana-
g2rial in *heir scope, a "systeams sngineering™ solution is
needed.

Tnlike hardware operation and suppor: amodels, where the
cost of spares, ©paintenance manhours, waterial, traiazang,
2+¢., can be 2stimatzd based on scme physical characteris-

~ics nf ~he systzm, sof“vware maintenance effort is sIrictiy

1 function of wpanhours to perform the necessary actiox.
Thus far, maintenance costs for sof+tware seem to te primari-
ly an estimate by an expert, someone faailiar with <the
changes to be made to a program, rataer than put<ting certain
parameters into a cost estimating relation and caiculating
annual maintenance costs,

Software maintenance costs cannot te ascribed to one
specific agent or event but instead to <the combined action
of many factors. By reviewing some of these, the complexity
of the problem can be better understood. In this research,
an attempt is made tc isolate areas that can be estimated by
formulas and then to establish the aathematical relation-
ships. As such, the following topics will be discussed as
~hey relate to the maintenance function:

1) Sof+ware Life-cycle;

2) Life-cycle Interrelaticnships;
3) Sof+tware Evclution;

4) Productivity;

S5) Complexity Yetrics; and

6) Brror Fraediction.

22

B. THE SQFTWARE LIPE-CYCLE

In the mid 1970's, the phrase "software life-cycle" was
ccined and became a popular aeans for conveying the basic
concepts of a software systea: auitiple phases and extended
l1ife. Many representations of the life-cycle axist; by com-

of

U]

aonly accerted practice, the soitware life-cycle conszist
~he development phase and the maintenance phase <takern col-
lactively. Depicted in Pigure 2.1 is a composite schematic

showing this relationship.

he

ot

This diagram oversimplifies <tae importance of
maintenance phass, A more accurate role of the paiantenance
function is detailed in the 1life cycle model (figure 2.2)
daveloped by Roms Air Development Center [S53]. From this
view, maintenance performed during the operatiorn and support
phase is seen to te a highly interactive process, The con-
jecture apparent from the diagram is that the same procedur-
al reguirements fcr software develcpmer+ must be duplicated
juring the wmaintepnance phase,.

The basis of applying a 1life-cycle management scheme <0
software is to direct attention +to all ghases encompassed by
*he system life-cycle and the contribution of 2ach phase :o

~he total 1life-cycle expenditures. Familiari<y with and

23

|
|Concept and| {
| Analysis | |

I

- W= o e

- e - - -

{ —— e i
|-->{Design| i

| | {Code and|
| {-=>{Checkcut| 1

{
{
| | | Test and | {
| I-=->{Integrationi {
| i

| ‘ !
| t=->{Iastallationf~=~} |

Stages of Software Development Phase |
| mmmemmemm s i it it ===
|

|

i | , {
{ |-=>{0Operation|~====-==- ---==>|Decozmission|
{
!
i

- s o - - - - - . -t -

|
i
l | I
|

| {Mainzenancsay| {Enhancement| }

Operations and Maintenance Phase

Pigure 2.1. Scftware Life~cycle - Composite 3chematic

24

ORNTS

wR

WY w .
SISTON SPecC OVAGES 70 IOFTWARE MAT.0 SPLCS

OWIGES T SOFTARE PAST-([SeCS”

TEST ang
INTERAATION

OQ(YERID SOFTWARE

? IRTALATION |
LT3 NAAOWAL | (PROCUCTIOW) |

T

v sorTwant
T SEFENSE
5§E-_'sa.' tcquinownTs
“‘M’ i S 70 SOFTWARE
xmnu j PAAT-{ SPECS

QUAGES 7O SOFTVARE o g S0THMRL {

PAXT 1T SPECS . KSieA
ph S

Quses ™
tvarsemma. TYELOPRXT . . B TR R R e R —
INSTALLAT 0N
A a 'y A A A, a, A, a
s o’ o' o’ sea” rea’ fon) a7

* WY WT K FOMALLY wOLO
¢ (ADM TPCE maS 4 SEPARATY SET OF SPECIFICAT NS AND SEPAMMATE MYIDS

i
}s
[a 1)

Pigure 2.2. Software e-cycie

aunderstanding of the life-cycle can help managers make =i-

fzctive distribuzion of the resources for a sof+twars systen
which will wultimateliy =>ffect the maintainability of the
softéare.

The life-cycle curves, more —recently called “Rayleigh"
curves, Wwere orginally formulated by Lord Rayleiga, tane
3ritish Nobel Laureate. Presently, these curves are used <o
rapresen* resource allocation (manpower) of 2 software pro-
ject. Preliminary research in this area was directed at ce-
source consumpticn in research and development (RED) sro-
j2cts., In a series of studies ccnducted ky Peter Norden
[54] of IBM, it was established from a large body of empiri-
cal evidence <ha+ large RED projects 1follow a life-cycle

pattern as described by <he Rayleign (manrpower) equation:

v? = the number of person-years of effor: =xpended
per year,

K = the tctral numEer of person-years required over
the life=cycle,

a = the curve shape parameter,

elagsed time in years, and

(34
"

e = a2xpcnential function.

26

up and phase-out

cycles *o cbtain

The principls cof th2 curve is as follows: Researca has

indicated that there are regular patterns of manpcwer build-

in complex projects. These patterns are

made up of a small number of successive phases or cycles of

vork thoroughout the life cf the projec+. Norden linked <he

a project profile. When the individual

cycles are added together, they produce the profile of the

2ntire projecs

EFFORT
PER
umT
TIME
M-YIYR

PROPONENT
PLANNING,
FUNCTIONAL
SPECIFICATION

(figure 2.3).

PROJECT CURVE

TEST &
vALIDATION

MODIFICATION

Pigure 2.3. Project Profilie

?eak manloading time (td) culairates during final stages

0f development

and igplementation (figure 2.4). Based upon

MANPOWER (FEQOPLE/ YR)
]

(NN FUNCTIONAL i

DtFinign | DESIGN. SPECIFICATION DEVELOPMENT) OPEAATION AND MAINTENANCE
] «Cusggueu = (CONTRACTOR) i ICUSTOMER)
CONTRACION) il

TEST AND
VALIDATION

FUNCT:ONAL DESIGN.
5vSTEMS SPECIFICATION
s T

- s

(INSTALLATION

'/, (SOMEWHAT /j P
4

] CEVELOPMENT 1 MODIFICATION ANO ENHANCEMENT TiME
0 WORK = 60% OF LIFE-CYCLE EFFORT .
WORK = 40% OF TOTAL
EFFORT "

Pigure 2.4, Manloading Profile

Norden'’s studies {55], cumulative resource allccation up *o
this time acccunts fcr approxiamately forty percent of tae
life-cycle. Occuring at the low end of the curve is the op-
eration and wmaintenance phase vhich absorbs <the remaining
sixty percent of lifs-cycle expenditures. The greater por-
~ion of costs associated with this phase are at+*ributed o
~he "maintenance *ail" or expectad 1life c¢f +“he software pro-
iuce. Failure repair, however, is just a swmall part of
nost-delivery maintenance activitlies. Studies {So] show
=ha* coding =2rrors account for only thirty percent of zae
post~delivery errors. The greater snare (seventy percent) is
sccasioned because there is a mistake in design cr specifi-
cation. Al-hough the cocde perforams exactly as designed, this
ices no+« zzflect *the original operational desires.

28

Logically, it would seem <that maintenance nanpower
c2gquir2ments wculd decrease over time due to growth in reli-
ability. In other words, as programming and design errors,
#hich ace comamaonly called "bugs*, are found and corrected,
the =ime to the next system failure should increase zarouga-
ou* *he maintenance phase of the life-cycle. This reliabil-
ity assump*tion, however, is disputatle. Maintenance action
“aken in response tO erIor cccurance can have three possible
outcomas:

1) the actual error is correctad;

2) *the error 1is corrected, but the £ix induces a new
errTor;

3) the error is not corrected, and ‘he program remains
non-operaticnal.

R2liability growth, <hen, is a probabilistic event which de-
pends heavily on the skills co¢f the maiantenance prograamers.
If the maintainers are coampetent, reliability should grow.
Ano*her contrcversial assumption is growth in maiatain-
3pility. When painptainability i1s viewed as <he <time re-
quired “o <return a software system tO an cperating status
followiag a system failure and maintainabili<«y arowth is
viewed as the decrease in time required <o correct an error,
<han an obvious <conclusicn would be grcweth in maintainanil-

i~y. Several factors, hewever, may produce an opposinag

29

conclusion, i.e. decaying maintainakility. PFatchwork fixes,

in addition to introducing nev =rrors, may produce mocdule

interface problems and documentation inefficiencies will

complicate the finding of cther errors. Reduced familiarity

} 4

L]

—urnover, <c¢an be an inhibitor.

+h a software systen, stemming from frequent persontel

Documenta+ion ard software

{programming) standards and controls may not be enforcad on

new releases,. Errcr identification and correction may be-

come further entangled when configuration coatrol is lax.

Again, *he compstence of the maintainers will influence the

zesults.

C. LIPE-CICLE INTERRELATICNSHIPS

Th2 management process rfor the maintenance c¢f sofware

involves decisiors in establishing ccntrol of changes to tiae

softvare and in providing for the implementation cf iaproved

func+-ional capability tbroughout
ware. The planning to acgquire
software main*enance must:

1) consider “hz entire life of

the life-cycle of the sof<+-

and impliement resources for

the sof+twars, and

2) begin earlg.in the life of the software in order o
i

reserve fun
the future.

30

ng and identify sufficient resources for

Diffarent time spans and levels of effort exist for the
3diffarent phases cf a software project. The failure to ob-
tain guan+titative relationships of a precision comparaonle
+o those available for estimating the costs of hardware sys-
+ams has led to <*he belief tha*t irterrela<tionships exist
among life-cycle phases. That is, the amount cf rssources
used in early phaases Jiapacts heavily c¢n the resource ra-
quirements for later phases. Using an approach similiar to
basic =2ccnomic groduction theory, Thibodeau and Dodscn [57]
déveloped a mpathematical mcdel to descrite the complexity of

+he phase interrelations. This relationship is given in <he

form:
ab
Q = AK L (2.2)
whera
Q = the level ¢f output,
K = the amount of capital irput,
L = *he amourt of labor, and

A, a, and b are =mpirically derived constants.

[21

Graphically, this is shown in Zfigurs 2.5.
To add a ternm repraesenting +echnological change or to
account for different classes of lakor ¢: capital, <the nuam-

ber of inpu* rescurces can be expanded to

Q = MK K L (2. 3)

31

s it e

Figure 2.5. BEcopomic Prcduction Curve
In order =0 indicate trade~offs between life-cycle phases,

~he same general formulation can be used and expressed as

b ¢ 4 k
P=aX X X X 2.4
d ¢ t =n ¢)
where
P = sofcware production resulting from the applica-
tion of the resources,
X = perscn-acnths ¢f inputs,

a, b, ¢, 4, and k are empirically derived con-
stants, and
subscripts 3, ¢, ¢, m represent designiag, c¢odiag,
testing, and maintenance respectively.

A further asserticn oade by Thibodeau and Decdman indi-

cated that limitations in design resources (e.g. a reduction

in planned resources) may be passed through the development
phases with €fipal impact in the naintenance phase (higher
arror rates). Based on the smathematical postulate previous-
ly described, ¢this type of relationsaifp can be shown by the

graph in figure Z2.6.

PN
Coding

cr
Testing

Maintenance Efforce

Pigure 2.6. Applicatiorn of Production Theory

Ia describing the infipite set cf relaticnshigs, table I
illus*trates some departures from tie ideal which may occur,
and how 2 reducticn or increase of resources in <these phases
will pe reflected in the error rate of <+he Jelivered soft-
4are, While it can be argued tnat the ideal 2rror cate aay
be zero, a more practical solution would ke to avoid de-
dicating 2n encrmocus amount of resources to achieve zero

errors. As a vresult, it would be expected <hat for most

33

information systems, planning would allcw for some marginal
arror rate. However, talis tolerance of e¢rrors does not nec-

assarily apply to tactical defense systeas.

J. SOFTWARE EVOLUTICN

Operational software systeas undergo a contiruing pro-
cess of 2volutiorn, the phases of which are repair, modifica-
tion, enchancement, and adaptation. Continuing evclution is
the visible sign of continuing interaction tetween the sys-
+2m and i+s environment. Even if --and this rar=ly, if
sver, occurs-- its first implementaticn was periectly coa-
ceived, perfectly designed, and perfectly implemented, a
program will require general maintenance.

Evoluticn dynamics is a theory describing the change of
1 software system over a period of time. The theory distin-

guishes be+«we2n progressiy

work (to introduce naw fecatures)

and antigrsssive work (fault correctioa, testing activity,

and iavestment in methodology to combat the complexity which
grows 4i<h system size) [58]. The tasic assumption of pro-
gramaing avolution dynamics is that it is legitiaate and
necessary “o view a large programs and i¢s maintanance orga-
nization as interacting systems. Thus one amust search "for

nodels <hat represent laws that govern the dynamic behavior

TABLE I

Hypothetical Phase Interrelationship Trade-~offs

1
| Hypcthetical cases |
{
i

|-------Q--------

| 11 2 3
R SRR
{Analysis and design > = =

|

jCoding and checkcut
|

n
A
A

| Testing = = >
{

| Maintenance = = =
{

|Changes No No Yo
{

| Reported error rate < > =
'-———--- - - - - - - - - —— e - - e T R . - s - n o ——— - -
{

{

{ Symbols:

aqual tc ideal
> greater than ideail
< less than ideal

N

>

{

5 6 7 8 |

= > = = |
i

= > < < |

{

= > < = |

i

= = > > |

l

o} Yes Yes No Noi
l

> = > > |

-— -

— - e e wm— -

35

0 3 et oL ik e L

WY

of the metasystem of organization, people, and program aa-
+arial iavolved in +he creation and maintenance process"
{59, 601.

FPeedback is Lasic to the process since the system aad
system designers are considered as a metasystem. The key to
good faedback iz int nsive use over time. The wmore the
software is used, <%he bpbe+tter it gets, as long as deficien- i
cies are fed back intoc the maintenance group and cor-ections
are made. This statement holds true provided that the maia-
~ainers introduce fewer errcrs than they resolve. Likewise,

the longer it is used the less the probability that the sys-

~2m contains majcr deficiencies. In analyzing a software
d=velopmen* systsm, a simgple beginaning would be as shown in
figure 2.7. When pressure is exerted tc providz bigger ra-
loases (later versions cf a system that contain s=nhancements
and/or corrections), +he rssults are more compiexity, re-
iuced quality, and growth rcate liaiting factors. Eventual-
ly, releases are made solely <for restructuring/rewriting.
A+ +¢his point, 13 fission effect is pcssiblz where excessive
growth leads to systzam breakup.

Varicus rublished papers [61, 62] have discussed zhe

characteristics and dynamics of <the evolution of iarcge

' Resource }) Systen | { {
| ememmeeeeee- >| Development |======-- ~===>f Field { |
{ Flow { | Relecase { Use | |
l { | | t |
Vb meessssessssssse- Somsesssse- |
u ° | |
| (| |
{ t | [
| | Fault Reports i |
| !

Figure 2.7. Developmeéent Release Cycle

programs, with the most significant contributiorn c¢f research
ione by Lehman and Belady {63, 64]. Their efforts were di~
rectad at understanding the dynamics of the sotftware life-~
cycie, *hersby creating an enhanced environment of manageri-
al awvareness and an understanding of system behavior. Long
ta2rm unpredictability of the system development and mainte-
nanc2 processes have hbeen attributed to the human ircerfaca,
HYowever, it has Leen found that mwmeasures of system ac+tivity
such as number of modulaes handled, iater-release <+.ae, and

total number of wodules in the system, show an unusual

37

) rea i+

—

ragulari<y. Since this regularity could not be atrtributad
-0 management dscisions, Lehman and Belady have <ried to

analyze it +through the use of evolution dynamics. By de-

scribing the =2nvironment of program creation and maintenance

in ¢2rms of regularities, +trends, and patterns, <they have f

proposad laws governing the evoluticn dynamics (<apie II).
Peazures of these evoliutionary trends were further sup-

por+«ed in a more recent study by Leintz knd sSwanson {65].

Analysis of data obtaiped from an extensive survey indicated
~hat *he magnitude of a wnmaintenance efgfcrt can be explained
by the combined sfforts of four variables: system age, sys-
“2m size, relative amcunt c¢f routine debugging, and the re-
lative experisnce of the mailntainers. The relationships of
these variatbles were modeled as shown in figure 2.8. Amount
of maintenance effort, the dependen+t variable, is seen %o be
influenced througn five other <causal paths invelving four
variables. Each causal path is initiated from the iandepan-

ient variabls, system age.

2. PRODUCTIVITY
Productivity is often considered a measure of the trans-
formation of meaningful and coatrollable units of iaput o

a=2aningful and controllable units of output. The question of

34

TABLE II

Laws of Evolution Dynamics

T - TTETETTETTT T T -1
CONTINOUING CHANGE

A _oprogram that is used and that, as an implementatio:n
2f 1+5 specification, retlects scme ctaer reality,
unqercnec ccnt nulng change or becomes ptogz=s--ve¢1
lass_ 1i1sefqyl ange or decay process ~cpontinues
antil i+ is ju ged mo*e cost effective to replace the
program with a rfecreated versicn.

INCREASING COMFLEXITY
As an evolving Eroarau is continucusly changed,

comp-=x;t ferflecting deteriorating ~sturctare,
crcases iees wcrk is done tc naintain or :educ=

1

(SN SR X
(AN =g}

THE PONDAMENTAL LAW
(OF PROGRAM EVOLUTION)

Program evcluticn is subject to _a dynamics which
makes_+¢he programming process, and hence measures of
global project and system attributes, sel‘-regulat¢aq
with statistically eteraminable trendssinvaliances.

CONSERVATION OF OBRGANIZATION STABILITY
(INVARIANT WCRK ERATEL)

The glcbali activity rate ia a irogect auppo*“ng an
{ évolving pregram is statistically invarianc

CONSERVATION OF FAMILIARITY
(PERCEIVED CCMPLEXITY)
Th2 release cqnbent](.changesl addizions, deleticns)
of <he successive eases oI an e€volving prcgram is
statisticalily luvar*ant.

guali<y must be urnderstood in all measures of produczivity,
i€ *hey ars =0 have mesaning. It is far easier to be accs

productive when producing +“hrcwaway products <han i1t .3 vhen

roducing high qualiity output.

39

N AR el i, ks i, ‘..A__._.-_f.mq.z—z*z-_‘_;J

| BRelative |
| Development |
| Experience |
(-) | ()
Yi=)

_ - (+) | Amount oI | (+) i Amdunt i

| Sys*t2m Age |--=---->| Maintenance |<=-=--=---| of Routire |
S T, | Efforet | | Debugging |

T(+)
(+) | (+)

| System Size

Piqure 2.8. Casual Paths of Maintenance Effor:

If sof+tware is sized in teras of a groduct measure such
as *he pumber of instructicus or modules, tken the assumed
parsonnel productivity agaiunst those measures is a key vari=-
ant in the estimats. Since producing software is a very
labor intensive activity, consuming greater <than eighty £five
seccent of the resources 2allccated for software development
{661, an 2ssential ingredient for arriving at an accurate
cost es+<imate cf the software 1lies in personnel groductivi-
Y. Generation cf scftware is creative and, therefore, a
wide vaciance aczoss perscnnel productivity can be expected.

40

3udget estimations required fcr software developaent

have lad to an akundance ¢f research explorcing <the =opic oi
programaing productivity {67, 68, 69] Traditional measures
of software productivity have includsd:

1) dollars per defect,

2) 1lines of code (LOC) per persorn-month (PM),

3) dollars per LGC,

4y dqollars per PN, and

5) complexity kranch per 1000 LOC.

Main<2nance researchers pose the yet unanswered Jues-
tion: Can the same criteria be applied for productivity
during <he maintenance phase? Within a maintemnance scenar-
19, m@module cons*ituents c¢f a software application «can be
categorized as new, mcdified, retained, and converted (fig-
ure 2.9). New segments consist of entirely new code. Modi-
fied segments are composed of changed code and the unchanged
code *ha* @may be affected by the changed code. Retained
ccde consists of previously developed and <“ested segments
that will be invegrated in%o the scftware products witaous
being modified. Converted code is existing code converted
=0 ancther language. Each of the categceries of code, wnen

ralated <0 a specific product, may produce a unigue produc-

41

A

All Prcgram Modules
i
|
|

Re+tained Modified New Converted
Segments Segments Segments Segmernts
| i l l
| | i {

l | i { {
Retainzsd Onchanged Changed New Convertad
Cod= Code Code Code Code

Pigure 2.9. Categories of Program code

Fac“ors which influence productivity have Dbeen widely
rT2searched. Data collected from sixty projects by #alston
and Felix shkowed that significant <zrelationships existed
between productivity (SLOC) and the ratio of develcped code
to the sum of criginal (or reused) code plus the developed
code [79]). The resulting plot shown in figure 2.10 sugges<s
~hat produc*ivi=y is higkest wvhen thers is no crigznal or
rzused code, <that is, when all tae ccde is developsd foom
vhe iaception of the project. As <he percertage ol reused

code grows, the expected precductivity decreases.

"

1K 1

t+ r O & A O

}-

IS 4

10

' - - -

0
atio o€ Developed tc Original and Leveloped Code (percent)

R

Pigure 2.10.

Recent

v2alad «hat

sively discussed, few

maintenance phase have bheen

shcws some, but not all, cf

in1dices of productivity,
Maintenance ccsts must be

Juctivity. To d¢ less is to

investigations done by
while productivity techniques have
systemic studies of benefits

conducted

43

22
|
|
|
|

50 100

Productivity - Reused Code Relatiomsaip

Swanson and L2intz,

Taw-
feen ext=a3n-
in

tae

(71]. 2.1

Figure

the factcrs ccmmonly cited as

viewed collectively with pro-

focus on only part ¢f the

| Structured |
{ Prcgramming |
|
L (#)
1
high N sinimal

{ (=) =) |
| Ccmplexity |=---=-=>| Productivity}<-----| Documenzation |

) L+ I) |

- e W e o - = - - e g . - - - - A - - - - -

low 4\
|

() + ()
|
l

extensive minimal

| i
{ Personnel Experience |

Pigure 2.11. Prcductivity Determinants

issue, It could be a misleading focus if management dic-
~3%es »0licies <that result in high preoduc=ivity during de-
vzlopmant work Fkut adversely affect the productivizy of

post-ielivery maint<enance. If tiae productivity is negative-

-

y affected because c¢f internal probleas prior to delivery

4y

or rzduced guali-y when in use, then costs will iacrease and

3ffzct <he pozenvial <o coamplete other projects.

F. COMPLEXITY METRICS

Quantitative metrics which assess the <complexity of
software <ccontinue to a<tract a high degree of interest,
Thes2 netrics are assumed to be valuable aids in dereraining
“he Juality cf scftware. A collection of such metrics which
assess numerous factors that constitute this nebulous "soft-
ware quality" bhave been proposed {72, 73). Such factors in-
clude reliability, portability, maintainability, and myriad
o-her xxx-abilities,

Potential uses for measures which assess these various
fac*ors are manifold. Inportance of metric relationships
lies in the follcwing areas:

1) As fesdback to programmers, they car be used during de-
velopment tc indicate potential gtcblems with develogped
code” {74]. A design is evaluated with the ametric rela-
tionships in mind. If it appears that this design ralls
outside of_ the metric tounds, then another design aust
be contemplated.

2) In guiding software testing, McCabe's cyclomatic number
has been frcposed as a means of assessing the_computa-
tional complexity of the sorftware testing problem [75].
Cther metrics which iIndex the uality cf ccmplexity of
sof<¢are may help identify modules or subrcutines which
ar2 likely %o be most error~-infasted.

3) If cne of a combination of metrics can be empirically
related “0o the difficulty programmers experience, <then
more accurate estimatiQh can be made o <he nanpower
tha< will be necsssary during maintenance.

45

In using <hese metrics, it 1is impoertant “o distinguish
bstween the ccamrutational anmd psychoclegical complexity of
software, since reasons for assessing them differz Computa-
tional complexity refers to “the juantitative aspects of tae
solutions toc computational problems" [76) such as comparing
the efficiency of altsrnate algorithmic sclutions. To il-
lustrate, as the number of distinct control paths tarfough a
program increases, the <coamputational coaplexity may in-

rease. Psychological cemplsexity refers to characteristics
of software which make it difficult to understand and wvork
with., Psychologicél complexity can then be thought of as
1ssessing human performance on programming tasks. Subse-
gquent sections will discuss currently used metrics that aave
been coupled with the maintenance effort in an ttempt to
predict pregrammer 2ffort required +o complete a specific
zaintenance task.

1. Halstead!s E

During the last few years research aimed at the de-
v2lopment of a "software science" lLas supporzed the conten-
#ion that +“here may te sipple theoretical explanation for
~he structural characteristics of many computer prograas aad

~hat <here is a streng Quaatitative relationship Dbetween

4o

these characteristics and the effort required tc write pro-
grams [77, 78, 793. Based on the thecry cf software sci-
ence, five entities of an algorithm expressed in a language

are measureable:

n1 = number of distinct ocperators,

n2 = number of distinct operands,

N1 = total numker of operators,

Nz = +*otal numkter of operands, and

|

n2 = number c¢f inputr/cuctput parameters for the

algorithm.
From these measurements, some defined properties for pro-
grams can be calculated: 1length (N), vocabulary (n), voiume
{V) , and program level (L). [80]

Using the simple relationships Letween these metrics
ind ~he effort () raquired by a programmer, Halstead ar-
cived a%+ an expression of effort (total nuaber of elementary
aantal discriminaticns) to generate a givem program whers

n N (N +N lo n +n
1 2(1 2) 92()

(]
"
<
N
]
]
[]
i
]
]
[}
]
]
]
[}
]
]
[}
]
\
!
[]
]
[}
)
]
]
1
J
]
]
]
[N

.
[V}
"

8y applying <he Stroud number, which is the rnumber
5% elementry pieces of data that a perscn can medtally sep-

arate par- szccnd (S), a dimension ©f time s intrcduced to

)

~he 2fZor% =2quaticn:

47

M

E v
T T - = wew 206
S SL ()

where T indicates the estimated <time fc¢r prograaaing. Ex~
cept for the Stroud number, all parameters on the right side
2f *he equation are direc+tly measureable for any implemenca-
<ion cf an algorichm. Research methods using calculated T
valuss have shcwn that a strong correlation exists with the
actual +time measurements in the absence of certain "iapuri-
+ies"™ which correspord to coamon undesiratle programming
practices such as unstructured code, low module cohesive-
n2ss, high module coupling, etc. [81].
2. McCabe's ¥(9)
More recently, T. McCabe [82) developed a complexity

d2fini<ion based on the decision structure of a prograa.

th

McCabe's metric is <the classical graph theory cyclomatic
numter v(G) defined as:

v(G) = number of edges - number of nodes
¢+ 2(numkter of connected componéents).

Two simpler metheds cf calculating v (G) aze presented by
AcCabe: <he nuskter of predicate ncdes plus 1 or the pumbe:
of ragions computed £romw a fplanar grapgh of the control flow.

Literally, «his complexity metric counts controi

pah segments which, wben coabined, will generate every

u8

possible path *hrcugh the program. Since additional control
pa<hs could make a program asore difficult to understand, the
nunker of tasic paths indexed by this metric may also relate

<o men+tal difficulty of a programming task.

G. ERROR FREDICTION

If managers Kknew how a prograam behaved for every con-
ceivable ccobination ¢f inputs aad could accurately predic:
all future input combinations, then they would kncw precise-
ly how aany errors are in that program and could predict az
which point in time that the program would next faili. As a
r2sul%, i+ would be fairly sipple to program resources for
softwar= maintenance. The cnly real decision, then, would be
whzther the annoyance from the error was worth the effort to
2limina%+e it. Because this ideal sizuation is not a cealis-
~ic representaticn of the world, except in the most trivial
prcgrams, it wouid <te a great aid to managers to have a
method +o predict residual errors with a reasconable degree
of cartainty. This capability would arm <them with a good
quide £or programming the amount of maignt2nance =fiort need-
24 for +he next time period.

In the ecarly days of computing, managers obtained rough

zstipat2s of <he number of errors in a module Ly assuming

49

st A

*hat +there was one tug in every sixty 1lines of code or
p2rhaps in every cpe hundred lines oif ccde depending on 2ach
aanager's optimism and experience ([83]. It seems to be a
r2asonable assumgtion that there is a tetter way *¢ predict
cesidual errcrs. The impcrtance of error detectior analysis
aas been recognized in the past few years and many studies
have addressed this problen. {84, 85, &6, 87, 84, 89, 90,
31) An important objective of most of this work has peen
*0 develop analytical techpigues to exaaine the error phe-
nomenon in order to compute or predict items of interest
such as the numker of errors detected at time t, <the pre-
sumed nubber cf remaining errors at time t, and the software
reliability function. (It should be noted +that 1none of
these studies deals specifically with <the detection or the
prediction of errors during the maintenance phase of the
software life-~cycle.)

One would expect software reliability to iamprove wit
age because latent bugs are detected and are presumanly cor-
raectad., However, there are exceptions to this general szate-
ment. Bugs can Le induced into prcgrams while cor-sctious
are baing made., This situation, called the "ripple efiect",

generally happans in very large systems like 0/5360 instesad

50

|

i

of small systems like a compiler [92]. When a change is
nade in moduls 'A' it affects the way acdule 'BY works. The
maintainer has neither the desire to change another nmodule
nor, probably, any idea that his change would affect another
module., With vast, ccmplex systeas it is impossible for any
person %o know all of the ramifications cf a change. Since
most operational software 1is subject to enhancements aad
changes in requirements because of the dynamic environaenc
in which it is run, it can be expected ttat tugs will be in-
iuced wien <he new code and that other modules will be af-
fected through interfaces with the new mcdules. 1In the long
run however, it appears that most software projects follow
=he predicted prccess and have fewer errors as timec elapses
{93]). Table III [94]) provides data <o support this phenocame-
aon. Observe the great variability of <+he data and the iz~
creased reliability as time passes.

Although the code appears <+<o become 1azore reliable as
timne passes, <there are still problems with error prsdiction
nodels. Many of these wodels assume a constant 2IIOr raze

{95, 96, 97, 98, 99]. This does not strike on2 as being a

i
D

asonable assumption on three accounts. Firgrst, the failure

t3
O
t

Ta*e will fluctuate Lkecause the frequerncy cf =cxecutic

TABLE III

successive Execution Times Between Failures

(Measur2d in seccnds, read left to right and top to bottom.)

-— o ama e am et e me cam s amm WS amn e e v wee R ame see aws @ s

g 2 91 112 15
138 50 77 24 108
38 670 120 26 114
325 55 242 68 422
180 10 1146 600 15
36 4 0 8 227
65 176 58 4s7 300
97 263 452 255 197
193 6 79 816 1351
148 21 233 134 357
193 236 31 369 748
0 232 330 365 1222
543 10 16 529 3719
4u 129 810 290 300
529 281 160 828 1011
4aus 296 1755 1064 1783
860 983 707 33 868
724 2323 2930 ldo1 843
12 261 1800 865 1435
30 143 109 0 3110
1247 943 700 875 245
729 1987 447 368 4u6
122 990 943 1082 22
75 482 5509 1C0 10
1071 n 790 6150 3321
1045 643 5485 1160 1864
52

the areas cf cods varies. Some areas may never be executed
{100]. As an example, if one assumes that there are one

hundred bugs in a program, <that the failure vrate is fifty

1h

13iluras a week, and +ha+t cpe is using a constint e€ITOr rate

rediction, +then aftar £if*y bugs havz been =2liainated thae

o

-t

ailiur=2 ra*te should te to be twenty-five failures per week.
If the bugs are eliminated in the order that taey are de-
tect2d, the first fifty tc be eliminated would be in the
nos+* frequently exercised areas of code and “he observed
failur2 ra+te would be less than twenty-five per week. If,
on the other harnd, =the ®mcst severe errors were correc=ed
fizst, 'there may be a situation wihnere there are several an-
noying but non-critical bugs in a highly =exercised portioan
0f code and the cbserved failure rate is forty failures per
ve2k daspi+e having eliminated fifty bugs.

Za2cond, accerding to Ottenstein ([1C1], the error cate
for modules, a+ +*he validation and integraticn s:age, varies
iaversly wita the size of a aoduls. This theory nas been
corrobarated by M*ctley and Brooks {102]. Motley and 3rooks
£2el <haz this inverse preportion is an indication <that

s larger modules were not as fully debugged dJuring the

53

validation and integration stages and would go into the op-
2rations ard maiptenance phases with a Jreatsr proportional
amount of errors. Ottenstgin e¢xplained the phenomeron in
just the opposite manner. She feels that there is a learn-
ing arnd retention Dbenefir hat operates with large aodules

and <thus the 1larger modules will go into operations and

maintenance wi*h a smallar proportional amount of =rcors.

A ~hird reascn for a variable rate of errors at the
validation and iztegration phase is also proposed by Otten-]
stein [103]. Earlier developed modules are more fuliy de-
bugged in the ini+*ial testing because at that p2ricd in the 1
project there is a lo* of time and money to do the job cor-

cectly. However, modules that are developed near the &nd of

1 contract appear to be hastiiy and incompletely debugged
before being subsitted for validation ©because bo=h time and
aorey ace2 running ou¢. TLe authors propose a corcilary to
“his hypothesis. The more over-budget and behind-schedule
+hat a orojec% is delivered, <he higher shculd be tae pre-
iiction of errzers detected in the maintenance phase.

Even if a nanager could accurately predict *he nuaber of
egrrors +ha*t will ke dstected in a given time period, <asere

would still be a prcblem in scheduling the proper amount of

S4

resources, Different types of errors will require different
amounts of 2ffort for ccrrection because they are of Jdiffer-

ent complexities.

H. CHAPTER SUMMARY

Numerous sof+tware tcpics are under study ian an atceampt
+0 uncovsr axplanations <for the phenomenology of <he soft-
ware life-cycle. 0f a3cre specific corcern Aar2 the evsnts
which 1l2ad to the increased expenditures during the opsra-
“ion and maintenance phase ¢f the scftvare projec<t. Indica-
~ions from research evidence are tbkat nct one single factor
can be namsd as the dosinant contripbutor to the life-cycle
maintenance costs. Instead, a wmultiplicity of fac=zors are
cited as having an impact on the total systen.

Recognizing the futility of identifying a single con-
-ributor, rTeseachers have resorted <to finding <the control
2lements that Dbest define <¢he changes thatr occur in system
characteristics. ith a ccntinued zresearch 2f£for:, betzter
understanding and increased fanmil:arizy of these system coa-
=rol elements 1nay lead tc posictive resulets in Llinkiag sys~

~am charac+eristics with maintenance requirements,

55

TII. COST ESTIMATICON OF SOFTHARE MAINTENANCE

Coupling the rising costs of computer software with the
r2lative dzcline in computer hardware costs would indicate
rhat computer sof¢ware acquisition <cost and maianterance and
operation cost (collectively referr2d tc as software life~
cycle costs) constitute the greatest share of the data pro-
cessing budget. Conseguently, predicting future software
costs for both existing systems (mainterance and operation
costs) and new developmert is of increasing concern %o
management,

The phenomenoclogy of <the software development and
maintenance prccess is not definitively known. Research
csuggests the existence of a fairly clsar time-varying pat-
ta2rn such as a Rayleigh curve or scme cther similiar forsm.
The analysis is complicated by <+the presence of “noise" or
stochastic components., additionally, tke oktservable compo-
nents (manpower, cost, time) are strongly subjected to man-
agement perturbation. This would indicate tha< although a
sys*tem has a characteristic life-cycle ftshavior, if <has be-
havior is not kncwn to managers 3 prigri, then tiaey will
r2spond reactively (non-optimally wvith time lags) to systan

i2mangds. A reasonatle basis now exists for expecting that

56

an adequat? phencmenological descriptior wmay arise from tae
following scurces:
1) statistical mechanics;

2) informa*tion theory coupled with statistical comamunica-
tion theory;

3) diffusion and transport theory. [104]

Tracking of ccsts thrcughout the life-cycle is impor=zamt
becauss, as pointed ocut in chapter Two, sixty percent of the
life-cycle effort is consumed during the operations and
maintenance phase. If this phase is treated as a level-of-
effor< task, then far more resources than necessary ftor
maintenance are used. Given a rfixed wmanpower or budget
constraint (very common in government), less than optimal
control of the werk during this phase increases the possi-
bili«y of mainternance work saturation (i.e. devoting all re-
sources to maintenance). This situation leaves no capability
~0 accomplish additional wecrk.

dithin +the scope of this discussicn, “hree types of
models for addressing maintenance cost estime.icr will be
considsred:

1) software cost estimation from a macroestimating viaw
using the Ncrden-Rayleigh curve parameters;

2) softvare cost estimation from a »icroestiaating view
using a work breakdown structure(WBS) methodology;

3) sof+ware evcluticn dynamics using system complexity as
a cost monizor.

57

"""-'U".ll-Ill-'F"II.-!-llll-I-!l---n-n---—.._F_m__.____1

The “ormat of presentaticn wi2ll include a general descrip-
~ion of the w®model with subsequent applicatien of the model

0o +he forecasting of costs within a aaintenance scenario.

A. SOFTWARE COST ESTIMATING MODELS

1, Description
This model attempts to provide quantitative an-
sWwers to the questions often asked by managers about soft-
Ware projects. These gquestions are gepnerally concerned wit
pcodect <ime duration, total cost, and the accuracy of zae
fiquras prassented. Putpnam's {105] methcds provide estimates
in the following areas:
1) Total life cycle effort in manyears;
2) Cost for the project;
3) Peak manpower needed;

4) Manpcwer needed at any specific time or ©phase in the
project;

5) Risk and variance analysis of derived estimates; and

6) Linear programmirg (LP?) techniques to impose real world
manageament ccasctraints.

Putnam’s contzibution t¢c scftware Ccst estiaat-
ing was <c¢ apply the Rayleigh curve to softwars: 1ife-cycle

manloading. Usicg tiae techniques rased upon “he life-cycls

53

rFo T ——

“heory developed by Norden, Putnam did a number of empiri-

cal studies and found that the software life-cycle exhibits

a rise in manpower up to a peak and thep a trailing off.
Basically, the Putnam model cbtains =stimates of
~he measure of work in man-years and of the total develop-
mant +*ime of the rroject. Development time in the Putnam mo-
d21 is defined as the elapsed time on the projsct up to thae
poin* when the system reaches full operational capability,
but not including the system definition and functional
dasign/specification phases. The estimates of the total life
cycle in man-years and the development time are then used to
desrive an equaticn giving the ordinates for a man-power ex-
pendi<ure curve <for a specific project, A yearly deollar

costing can then be computed for the project ry muitipying

the ordinates ¢f the man-pcwer curve at each year by the av-
2rage cost/man~year to arrive at a decllar cost/year and,
subsequantly, at a tctal dollar cost for the project. Put~
nam uses the Ralsigh equation, which has been empirically
letermined to fi< the project manpcwer loading precfilie for

large projects and tc bast represent Norden's model. The

59

2
y' = ZKate—at (3.1)
where

y' = the number cf man-years of 2£fort expended per
year,

K = the total nunber of man-years required during
the life cycle of the project,

a = the curve shape parameter,

t = *he elapsed time ia years, and

e = +he expcnential function.

Wich the assumption tha+ the shape of the curve
is scmehow rTelated tc both the difficuley of a particular
jevelopment and tc the skilli level of the project team, a
means for expressing these relationships in terms of Bay-
leigh curve parameters was derived. The relaticnship of the

parameter a to dsvelopment time (t) is:
ol

2
a = 1/2td (3.2)
which, when substituted into the derivative foram of the Ray-
leigh curve, -esults in the following eguaticrh:

2 2
=(r /2t)
a

2
y* = K/td te (3.3)

60

To use the above equation, estimates npust be
found for <he tctal 1life cycle ir man-years (K), and tae
development tinme (td). Virtually every parametric software
cost modal is based on an estimate cf ccmputer prograa size,
m2asured in either scurce statements or object code instruc-
~ions. Putnam uses source statements tecause that Is what
programmers produce. Likewise, it simplifies *he mathemati-
cal computations tecause compiler efficiencies are not con-
sidered. The relaticnship that is used by Eutnam to eguate
source statements to development time and project effort is

jiven by the folleowing equation:

1/3
Ss = Ck*K()td (3.4)
where
Ss = delivered source lines of code, and
Ck = state-of-technology constant.

Within the wodel, estimating program size is
viewed as an it2rative prccess that should be recomputed
several times during the system defini<ion and furnctional
design/specification phases in the software life cycia. The
first 2stimate is done a* project conception and can be lit-

~le nore than a btest guess used tc estaklish basic econoaic

61

f2asibility based on past scftware projects and expert opian-
io2n. As acr2 knowledge is gained acout <the project, indivi-
dual segments of the system are estimated seperately and
then *otaled to give a more accurate estimate of the expect-
2d size. Also, standard deviations and confidence intervals
are derived frcam statistical methods that use best and worst
case 2stima+es.,

To determine the technology constant, data £froa

past software projects must be inserted into the softwarse

chatad

aquation (3.4) tc derive the unknown variable Ck. It should

ba noted that Ck is initially very difficult <o deteraine

but should remain consistent for similar projects within a
specific c¢rganizaticn. After the paramet2rs Ss and Ck are
datermined, varicus values of td ands/or K may be substituted
in%o the software equaticn to preoduce a parama2tric graph
showing size versus effort and time (figure 3.1).

A constraint 1line determined by management aad

[}]

epresenting a difficulty gradient for certain types o pro-

cts is then superinmposed on the graph. Values <caat f£aill

n
..‘

~de
{i]

below this line are d=termined to be infeasible feor sotftware
developmen<.

After values and ranges are fcund for td and k,

62

T 200 | uY
'n —

€Y

MY

1Y

|

|

LU 47 éU 0 T &U 40 o1y
System Size x 10

Figure 3.1. Size vs. Effort ard Time Relaticnship

dollar costs for the project may be computed by mul<iplying
plying an average labor rate per man-year by an expectad
value of man-years tc derive an estimated total cost for a
project. A variance estimate for dollar costs may be ob-
~ained in a similar manner from the variance orf man-yeacs.
dhile <+his a20del r=cognizes that real world =managerial
¢constzaints exist, they are not explicitly addressed. 1Ia-

s raccmmended that linear programming technigques

P

szaad i<

shculd be used <o accournt for everyday ccncerans such as

63

con+tract dsadlines, c¢ost ceiliangs, ard hiring practices and
capabili=ies.
b. Applicaticn to Maintenance Costing

Putnam's model takses a macro approach to answer-
ing the gquestions mcst of*en asked by 3anagers concernliag
+he arsas of time, effort, anpd cost. Accecrding to relation-
ships dztermined empirically, ar overall estimate o©Of man
power is obtaiged and subsequently ailocated among the
differant phases. To determine *he risk involved in the es-
<imation, statistical methcds are used which give the manag-
2r a 'feel' for the accuracy of the data presented to hin.

As vcrk proceeds during the life~cycle, uncer-
tainty apbout the management parameters decrease. In order
to follow and track the <ime-varying behavior of a software
systeam, empirical data zust be collected and plotted to show
the current labor force for any given tiame (figure 3.2).
Using this data stream, <*ime series analysis can be done.
By <urning the characteristic Rayieigh Dbehavior into a
straight line, the actual manpower data may ke fiected to get
a revised estimate of future resource consuamption.

The linear form of the Rayleigh-Norden curve is
illustrated in figure 3.3. This form may be obtained by di-

viding equa<ion 3.3 by ¢t and taking the ratural logorithm of

o4

ehea i et o ocibiuihonn coiiconiiioncin. st

e

MY/YR

o [*] 9

: Q o
U R A Y YUY O O PR (O

Tizme or PY
Pigure 3.2. Typical Plotting Structure

“he result, This yields

2 2 2
Ln(y'/t) = (-1/2‘.‘d) o+ Ln(K/td) {(3.5)

which fits the familiar linear forama y = mx + b.

Actual data is set up in a table fora with addi-
rional calcula*ed data points that are needed <for the cor-
ra2sponding plo=. Hypothetical data from Table IV is plot-
zed in fiqure 3.3 with the best straight line fitted to the
data points (determined by eye or caliculation).

From this plot, Rayleigh parameters can be cal-

culated. The slcpe can be used to compute develcpmernt tine

-~

(), while the intercept (K/td‘), giver the value of N

just ob-ained, yields the value of total effor:t, K. Calcu-~

lations for Jdetermining these values are 1lis=ed with <he

figure.

05

TABLE IV

Hypotheical Project Data

It y' y'st t Lo(y'st) |
e i e ittt [
P 68 68.0 1 4.22 |
P2 70 35.0 4 3.55
i 3 106 35.33 9 3.56 |
{ 4 118 29.50 16 3.38 |

Prcjected management estimates can be cailculated
by ex+<snding *he line to subsequent year points (figure
3.4). Con*inuirg with the same example data, future anan-
loading predicticns are made by applyirng the sequerce of
a2quations ccntained in figure 3.4.

Similiarly, —resource estimation <£for additional
outyea-s may be computed. As mentioned earlier, this aodel
i3 an i+erative procedure. Each year actual project data is
34dad to the %able. The data 7oints arce replo=zted and the
bast fit s*raigh<¢ line is again deterained. New values for
~he slope and intercept are found and frojections are thaen

sade bvased on “hese nevw values.

to

".."""""“""""""'-lllllllIlllllllllllIll|l|l||lnll--..............-...,___________.!

La(y*'/*) |
5 x = 22
R e et aal >
o
¢ = =1
o o Y =
3
2
1 & _
5 10 =] <20 22 30
2
t time)
§Lges‘sglsg;%£;sg§] Intezcept calculations
Y - -
Slop2 = === = == = === =3 I =4.0 = Ln(K/t =D
P x 22 > (K/)
2t
~ake reciprocals,
5 Ln(K/t)
- = 22 =) = 4.0
d
* 2 = 11] K/t 2 = 54.6
-a d -
2
* = 3.32 years K = 54,6 =
d ol
£ = 54.6 = 11
K = 601 manyears

Pigure 3,3, PFitting the Best Straight Line

67

La(y's2) |

3V

t (time)

Projecticn_for_yeaz 5

v = 3 years

Ln(y‘'/t) = 2.85
2.85%
y'/5 = e
2.85
y! = e (5) = 17.29 (5)
7; = 86 peovple (manvear/year)

Pigure 3.4. Line 2xtensxon and Prediction

2. Arsmy HMa
a. Description
Realizing <+<hat there was a need fcr a siample,

fective, reasonapbly accurate procedure for estimaciag and

2

rt

con<rolling resources, Army Headquarters analysts produced a
comprehensive macroestimating procedure for allocating tae

appropriate manpower commi<fmernt to an application system at

68

any poin*t in the system life cycle [106]. Tae procedure
2naktles users tc forecast the size of a new application
sof+tvare project and suggests the manlcading necessary to
accomplish *he prcject worklcaed.

Some functional estiamators fe¢r th2 project man-

ager include:

1) op-imum man-loading over iife-cycle;
2) wortal manpower cver life-cycle;

J) cost per year;

4) risk grecfiles;and

8) scope of applicabili+y.

Initial analysis of all United States Army Coa-

puter Systems Ccamand (USACSC) systems yielded a datapase

from which statistics have been derived that permit estaon-
lishmen* of <control liaizs on rescurce allocation at any
point in the life-cycle of a systen. Additionally, numeri-

cal correlation points between effort/unit time and normal-

}ae

zed <+ime were estaklisned for system develcpment aile- h
stenes. Using these pcinpts, the F[project manager carn plot
~he projec+ life-cycle profile of a software development ef-

for+ in terms of the *ime +that various milestones should be

rzached and the level of -esources (manpcewer) that shculd be

69

applied to <the system development at those points (figure
3.5).
Excursions outside statistically determined control limits
shown in <figure 3.5 should trigger the action officer to
~ake corrective action.

Using “he mathematical relationship developed by
Norden,

2
~-at
y' = 2Kate 3.1

step-by-step procedures were developed fcr estimating system
variables for the following cases.

(1) case 1: system already under development

(resqurces tudgeted). Using budget data, +the maximum lavel

of manpover(y') and the nuaber c¢f years o reach maxiaua
max

sffort (= ,) is determined. Rather thar compute tke values
Y

nax
for outyear manpcwer loading, Table V is used to compute the

values of y' for the apprcpriate ¢ , - By multiplying any
Y aax
2ntIy opposite its time period by K, the approprciate number

of many=ars are ocbtained. The units of K and t will dJeter-

mine the demensices.

79

Cesign Cert

A4 &: T R D Sttt
/ S.I.T.
P.E.T.
Extension
|
{ ‘ {
Y'max ~+- |
MAINT
] 0.23 y'aax
k
- i |
START t tMaint
Y'pax
0 1 2.38
NORMALIZED TIME (t/t)
Y'max
DESIGN CERTIFICATION
first 0.235
expected 0.433
last 0.618
SYSTEMS INTEGRATICN TEST
first 0.550
axpected 0.660
last 0.768
PROTOTYPE EVALUATION TEST
first ,613
expected 0.800
las* 0.990
EXTENSION
first 0.613
axpected 0.930
last »250
YAINTENAMNCE
first 2.096
expected 2.38
last 2,853
NOTE 1: First and last are at five percent gprobability

there is a

exe €,

1l
it

NOTE 2:

Pigure 3.5.

. ninet
/tymax will lie between
ticular milestone event.

Tatular entries are ia normalized time units.

71

irst and

last for a

Milestones Applied to Project Profile

lev~

percent probability that

par-

If act, ask gquestions.

TABLE V

Ordinates for Manpower Function

e [2 3 4 5 6 7
SR 3 S
0f a2 f .50 .1250 .0556 .0310 .0200 .0139 .0120 |
—— '
1 .60653 .22062 .10510 .06057 .03920 .02739 .02020|
21 .27067 .30326 .17794 .11031 .07384 .05255 .30918|
3 03332 24349 .20217 .14153 ,10023 ,07354 .05585
41 .00134 .13533 .18271 .15163 .11618 .08897 .06933|
51 .00001 05492 .13852 .14307 .12130 .09814 .07906|
61 01666 .09022 .12174 .11682 .10108 .08480|
7 .00382 .05112 .09461 .10508 .09845 .08664|
8| .00067 .02539 .06766 .08897 .09135 .08497|
9 .00009 .01110 .04475 .0712¢ .08116 .08036(
101 .00000 .00429 .02746 .05413 .06926 .07356]
11 .00000 .00147 .01567 .33912 .05691 .06530|
124 .00044 .00833 .02694 04511 .05634]
13} .00012 .00413 .01770 .03453 .04729|
14 .00002 .00191 .01111 .02556 .03866|
154 .00000 .00082 .00666 .08130 .03081j
16 | .00000 .00G033 .00382 .01269 .02395|
171 .00012 .00210 .00853 .01817)
181 .00004 .00110 .00555 013464
191 00001 .00055 .00350 .00574]
201 .00000 .00026 .00214 .00639|
72

st

e - _

(2) Case II: New system (nQ :zasource data).
Total man-years of effort and peak time for manpower loading
is estimated using Bayes' theorea. {107)] Based c¢cn empirical
Jata from interrnal systems, a prcbability versus K demsity
function was derived without <regard to type of systea.
Purther analysis determined frequency cf system type aad
prokbability of cccurence of each type. Using estimates
based on past USACSC experiences (the average K valu2 for
all systems under development and average K for the func-
tional type of systea), initial estimates Zor a new new gde-
valopment are calculated from regression graphs. Then, by
applying Bayes' theorem tc average these individual esti-
nates in the weighted protatbility sense yields a better es~
zimate of K wi<h a swmaller standard deviaticn (i.&. Dbetter
confidence in th: estimate). To improve estimates and re-
duce uncertainty, Bayes' theorem is sucessively applied.
b. Applicaticn to Maintenance Costiag

USACSC empiricaliy determined that ail or their
systems reached a steady level of effort (maintenance level)
on the average of 2.38 times the amount of time that wvas
used *o reach maximum effore. Tais relationship can be ex-
pressed as:

73

t = 2,38t (3.6)
maint ¥
ma x

In applying this eqguation, a system, with maximum ievel of
affort reached at year three, would reach a steady state at
7.14 years.

The level of effort associated with <he steady
state maintenance phase was empirically deterained by USACSC
0 be twenty-three percent of y'max with a ninty percent
confidence interval from eight percent to thirty-eigat per-
cent of y! . At that ©point in the [project 1life-cycle,

max

vhen 2.38t , (tventy-three percent of y!) is reaca-

Y
max max

2d, using numbers generated frow the manpower -egquation
{3.1) should be discontinued and a constant 1level of effort
of twenty~three percent of Y'max should be used until the
system is replaced. Figure 3.6 shows a generalized

control-limit envelope of a ninety percent confidence inter-

val for the resource lievel.

74

(ALLOCATIONS OF W-V/YRSHOULD REWAIN o, /¥ = 0.25 (USACSC DATA
WITHIN THESE UPPER AND LOWE R BOUN
UNLESS THERE 1S A KNOWN CAUSE.) % PE"“:E”T CONFIDENCE INTERVAL =
E DIMENSIONS ARE IN NORMALIZED UNITS TO G0y /¥ =2040
DETERMINE TIME FOR ANY SYSTEM, MULTI-
> PLYBYty, . TOGET MAN.YEARS, MULT!.
2> PLYBY Y’ ...
w L& 8 max
2 90-PERCENT C.1.+
sl NOT MORE THAN § PERCENT OF
3 +1STO ERROR USACSC BUDGET PROJECTIONS
2 SHOULD BE ABOVE THIS LINE.
3 1.0}
g
§ osle EXPECTED RESOURCE LEVEL |
] ~1STD ERROR ’
o 06f-
o MAINTENANCE LEVEL
3 o4
s | 90-PERCENT C.I. -
z NOT MORE THAN § PERCENT OF
2 o2f- BUDGET PROJECTIONS SHOULD
BE BELOW THIS LINE.
0 | | 1. | ;
) 0.5 1.0 15 2.0 2.5 30 18 /

NORMALIZED TIME Wt,'mu)

Pigure 3.6. System Resource-Control Liaits

B. SOPTWARE EVOLUTION MODEL

V. Lehman-Belady Yodel

a. Descripticn

There have been severali attempts made <to assess
rasource allocaticn <o achieve the repair or modification

c2quir2d for a single release, which is a new version of a

75

o <2 eyt ———— e

systam. A varisty «cf data has been <collected relating to
module handle rate and celease interval. Based on experi-
ence in dealing with different environments, it has been
suggested that dsvelopment and maintenance trends exist giv-
ing rise tc complexity measures. These measures, in turn,
can be determined by the average number of o0ld module nan-
dlings per new mcdule and per fault fix, respectively.

As systems evolve over a series ¢f releases, the
ratio of changed modules tc the total number of modules have
been found to mcnotonically increase and approach unity.
This ratio is an observed and directly measurable guantity
which describes the system's property of resistance to
change. 0f importance is the indicaticn that the number of
aodules inveolved in a system modification is likely to be
proportional to the effort spent. [108, 109]

Belady and Lehman proposed a model in which ac-
«ivity is of threce kinds: progressive (F), antigressive (a),
and additional work related to system ccmplexity (C). Iz
was hypothesized <hat a balanced budget (B) implies <hat at
any timas

B =P + A ¢+ C. (3.7)

76

Although simple, the modal captures two important aspects of
avolution dynamics; +the shariang o¢f the resources between
progressive ard antigressive effort (where both A and C are
corsiderad antigressive) and the absorption of total budget
and further growth limitation by the inevitable rise in tae
cost of complexi«y.

Incrcase of C activity is hypothesised to stem
from neglect of A activity. Removal of resulting cumulative
neglect can be accoaplished only by a temporary increase ia
A, If the total budget, B is limited, the result is a tea-
porary decrease in prcgressive activity, P. It is assuaed
*hat B, P, A, and C can Le measured in cost per unit time.

The cost function is expressed in the fcllowing fashion:
t
Cost (t) =0f (1 - B)KP(PdrT (3.8)

where
KP = inherent A activity required for each uniz of
P activity to prevent complexity growth;
m = papagement factor, the fraction of KP actually
dedicated by management tc A activity (0<ak1);
and

T = a time constant.

77

b. Applicaticn to Maintenance Cc¢sting

Preliminary analysis and simulation have been
carried out using a noa-lineer differential equatior model
of evoluticn dyramics. It has been found that the aodel is
capable of reproducing some iaportant phenomena observed in
Jata “hat can be related to observed characteristics of the
systen.

In figure 3.7, the simulaticn shows that the
code production rate (the rrogressive clement) increases to
a maximum of about 225 modules per year. At the end of the
first year, the complexity has increased tc the point where
such a produc*tion rate capnot be sustained with the budget
available, since an increasing resource demand is beiag made
by A and ¢ activity. A balanced budget r=2quires a reduction
in P activity, which later lsads to a reduction in A activi-
~Y. By year six, the system has reached its limiting size
with the resources available.

Although results seem promising, a great deai of
work must be done befcre pfactical Lfesul*s in the form of an
accurat2 predictive model can be achieved. Froam figure 3.7,
it would seem apparent thkat applicaticn of control theory
«0 modules develcped earlier may result ip a substantial

payoff in financial <eras.

78

————

500_

Total size (modules)
400_
300_
200_

Complexity

100_

Growth rate (modules/year)

: : 1b

Time (years)
Figure 3.7. Grcocwth Rate Simulation

2. 22:r Model
a. Descripticn

Putnam and Norden have prepared a Raylaiga curve
model for +the rate at which resources are consumed by soft-
ware engineering grojects. One of the model's main assump-
tions is that <the initially rising wcrk rate is due to a
linear learning curve governing the "skill"™ availabple for
solving problems at time t. This assuagtion is questionable
because a linear learning curve is not theoretically sup-

por+2d4, and the skill available on a project depends on the

rascurces which have been applied to it [110]. Thus, this

79

bk

assump-ion «confuses intrinsic constrairts cn the rate atc
#hich softwvware can be produced with management's economical-
ly governed choices on how to respond to these coastraints.
Parr asserts that <the rate of progress on a
sof+war2 rprcject is primarily determined by dependencies
amaong the problems which must be solved. Scme probleas can
be solved in parallel whereas others can only be handled se-
guentially. Let W(4) Dbe the pumber of probiems whica Lave
beern solved at time t and V(t) Dbe the number of visible un~-
solved protlems at time t which can be solved (i.e., aill
2arlier required fproblems sclved). When a problem is solved,
W(t) incrsases by 1; V(t), however, may increase or decrease
daepending ¢cn wvhether or act the fproblem solved aakes new
problams invisible/solvable. It is reasonabls to assume
that preblems solved sarly in the groject will lead to mcre
unsolved problems, and that those solved later will have a
higher prokbability of not making new unsclved problems visi-
ble, A crud= approximation to this is to assume <hat the
probability of a solved prcol=m not generating mos2 unsoivad
problems is iinearly proporticnal to the number cf problems

solved., (111]

80

How dces the above relate to the rate at which
lsvelopment programs can rbe made? Clearly, manageaent can
ce2duce the rate of [progress by supplyirng inadequate re-
SOurces. There is alsc an upper bcund to the amount cf ef-
fort which can e usefully applied. Rapid progress using
large amounts cf input resources i1s possible only when there
is scope for sclving precblsms in parallel. In practice, a
different programmer (or possibly a team of programmers) can
be assigned to each separate visible unsolved problem. This
suggests that the rate at which useful work car be applied
is proportional to V(t), and that with this "“optional" iaput
affcrt, sSteps ia the development will ke achieved at a rate
proportional <o V(T).

Whereas the Rayleigh @model proposes taat <he
rate of progress will be preportional to the skill level and
number of prodblems remaining, <the above nas argued that it
is provortional to the visible unsolved problem set. a

ma+hema+ical expression yields:

]

T(T)y = (1/4) sech‘ ((% + c3)/2) (3.9)

a hyperbolic funcrtion symetric in ¢ with an integration con-

s-aat ¢ ; whila tne Rayleigh fuaction is:
3

V(t) = yl = 9 (3'10)

2 .
The sech wmcdel closely resembles <he EKayleij;h mcdel in the

latter half of the curve, but the fromt tail 1is positive

34

her <han zero like the Raylsigh (figure 3.8). Thus, in

2 .)
ne sech mecdel, projects dc not have well-defined starting

ra

o

points., This acccunts £for work done prior to the official

project starting date.

wgrkrate

-w==-==-=-Rayleigh curve

00000000Secch curve

"'U.U"U!S"W!U"Y!S"Z!U"?!5"3!U'Yime

Figure 3.8. Secha Curve

One cf the principles of software programming is
that decisions initially made should te high-level struc-
tured ones which identify components fcr subsequent cefine-
a2n%., Incresasing the ccmplexity of the initial decisions ia
~his manner is eguivalent %¢c varying the distribucion of tae
>-3bability of a solved problem generating unsclved ones.
-7 3clifring <he assuapticn that =zais prcbability is linear,

wsTkrate functicn can be derived:

v
in
(29

82

V(t) = A -2 9t 3.1
(t) --_---_--EEE-(__-._)..._-372 ()
(1 ¢+ A exp (~20o/t))

Thus, it may te seen that whereas the Rayleigh
nodel of scftware development proposes that the rate of pro-
gress will be proportional to the skill level and number of
oroblens remaining, this section has argued *that i* is pro-
porzional to the size of the number of the visible unsolved
node set.

Results obtained from the proposed model are 1

similiar to the Rayleigh model, except that account is taken

of work contributing to a project wnich precedes its offi-
cial starting da+e. The proposed model has been shown to be
sufficiantly determired for it to be possible toraccount for
“he effect cf different prcgraamming methodolcgies on the na-
tural wWork associated with the project.
b. Applicaticn to Maintemnance (osting

farr suggests that exhaustion of the ©probles
space is the wmain cause for decrease in maictenance effort
2% *he end of the prcject prorile curve. In addition, tae
structure of the software product achieved during the devel-
opmen+ could affect -he project work prefile. While appli-

cations to maintenarce «ccsting have been addressed in

concept only, iamglications are that integration techrigues
for deveramining “he area under the curve at a specific tinme
pe- riod vill produce results similar to those obtained by

using Putnam's model.

C. CHAPTER SUMMARY

With the intent to gain management ccntrol of predicting
main<spance costs, various socftware cost estimating methods
and philosophies derived from observing trends and patterns
in the development cycle are being extended to encompass to-
*al system costs. Supportive evidence for the accuracy of
+he models discussed herein is contained, for the most part,
ir software life-cycle simulations. It is anticipated, how-
aver, that the acute interest and increased awareness shown
in the rescurce investments attributed to sof<ware mainte-
nance will be viewed more «critically. Althougn lacking in
substantial procf for predictive validity, <these aodels
serve as stepping stones in producingy a composite model for

“racking mainvenance costs.

84

SIS

Previous chapters have addressed tepics that are being

’ critically examined for their impact on the software mainte-
nancz phase. They also discussed the application of current
jevelopmen* scftware cost estimation techniques for obtain-
ing maintanance costs. The focus of this chapter will be
the presentaticn of a method for arriving at a well-
structured view of the management of the maintenance phase
of the sof*ware life-cycle. ©While a mathmatical model which

accurately explains the phenomena of the maintenance pnase

3till remains elusive, a planning and control model has been
developed *o aid project managers. The structure of the mo-

d2]1 embodies two distinct concepts:

1) a planning ccncept - development of +he wmanagement
stratagy to cement the perceptions of the maintenaace
issue;

2) a con*rol ccncept - procedural analysis for estimating
the maintenance manloading requiremeits.

Subsequent sections will address appliication of <ach as-

pect of the model in depth.

85

A. PLANNING CONCEPT
1. Project Managemen:

Primary responsibility for develcpaent of a manage-~
ment stTategy belongs to the project manager designated to
manage *he system plan. As project manager, one must ini-
tially determine and define the maintenance requirement of
the mission profile for the system that is to be desigred
(i.e. built-in maintainability).

Pactors which must be considered early ia the forau-
lation of a maintenance plan include:

1) Probability of change in requirements. dhile it may be
impossible tc define adequately the comglete Lequire-
ments for a large program, viewing the type orf Systen
application (busSiness, scientific, command and ccntrol)
and utilizacion rate will serve as _indicators for the
3mognt of flexiktility to be «considered in the systea

2sign.

2) Software performance requirements. Again, application
type is the dictating force for analyzing this factor.

3) Hardware life-cycle. In planning for softwvare mainte-
nance, the 1interacticn o the nardware and software
life-cycle must ke taken into account.

2. Objectives of the Maintenance Ccacep:

Derivaticn of maintainability requirements froa the
descripticn of the cperatioral <requirements provides tae
support planning criteria on which to tase <the maintenarnce
concepts appropriate to the maintainability —<Cequirement.

The maiaternance concept, which basically defines criteria

86

governing the sccpe and methods applicable at each echelon
»f maintenanca, attempts to satisfy the quantitatave main-
*ainability requirement derived for the system and the plan-
na2d support environment within which the system will oper-
ate. Early development cf the appropriate wmaintenance
concept will provide a definitive and uniform basis for ac-
complishing the system design and support planning tasks.
3. BEstablishing the Maintenance Policies.

System effectiveness is jointly dependent on several
parameters, of which performance characteristics, systea re-
liakili+*y, and operational availability appear to be the
most critical. 1In effect, these parameters set baseline re-
quirements cr constraints wbich may have impact upon the de-
sign process depending upon the maintenance policy that has
be2n established. While a boundless number of policy varia-
tions may exist, the following four categories identify the
range of policy choices. The basic distinction among these
four catagories lies in +the amount of resources invested

over +*im=2 and the cumulative banefit received over tiae.

87

PP

a. Category I - No Management Ccntrol
A steady wmaintenance effort is applied with no
attempt for configuration control waich is easuring that a
master copy of all operational software is wmaintained. Coa-
plexity of the prcgram will eventually reach the point where
locating arrors and/or making changes becomes exceptiorally
difficult. Gradually, the program becomes less useful until
it must be discarded and a new program developed. This
policy may prove to ke cost effective for situations where
it is known that the nature of the application will liait
the usa2ful 1life c¢f the prcgraam.
b. Category II - Permanent Support Level with
Pericdic Redevelopaent
As in Categoery I, a steady level of maiatenance
support is provided by a permanent workforce. &edevelogpament
Oor a new release can be planned for at regular intervals or
in response to a specific quantity of change requests.
C. Categcry III ~ Error Repair with dajor Changes
Manpcwer support is set at the level needed to
correct program Ltugs. External programming support would be

required fcr making major changes.

88

d. Category IV - Error Repair Only with Periodic
Redesign
As in Category III, manpower is set at the level
needed to correct an unacceptable design error or prograa
bug. Change requests are used in establishing specifica-
cions for subsequent design of: a new prcqgraa.
4. Mapagement Structure
Since the level of repair folicy must be compatable
with the maintainability requirement, tae paintenance con-
cept must te defined for each management level of mainte~
nance established. Beginning with the Jlowest level of us-
ats, maintenance concepts are implemented with subsequent
policies for higher management levels developed <o support
the user level ccncept. To illustrate, maintenance may be
divided into three echelons as discussed below and shown in
figure 4.1.

1) User level. Yaintenance may be restricted to failure
reports and system restarts.

2) Organizational level. Techniciang perform _corrective
maiptenance, Tasks performed would include locazion of
fault, module repair, and testirg.

3) Contractor level. Maintenance performed at this level
may be used to supplement (augmented support or to
teplacg (sustained support) the organizaticna level
suppoz*.

89

Activity User Organization Contract
Level Level Level
FPacility Agency and/
where Remote or having of contract
performed local site project facilities
coghizance as required
) Maintenance
Who perforas| Maintenance division or Contract
perscnnel support team| perscnnel
Restcre Locate mcd- Locate mod-
Maintenance system to ule errors ule errors;
action operational repair and’ repair and
atus return to zeturn to
user usex
Inspection Module Complex
and restarts|{ repair; 8a%xs,

. minor majoT coding ica-
Maintenance repairs and modifica- tlon major
tasks adJjustaments tions, cod ‘ni

mit testing rebuilds
change
requests

the rTequired

+h an

objective,

=ion,

Pigure 4. 1.

nticn

cptimum kalance

it is

ments and potential life~cycle costs.

with “he appropriate conceptual

is *aken in each thase.

Maintenarnce Levels

jectives

the aaintenance object
level of maintainability in

between resocurce

necessary to bsgin the

approach.

Ir order

i5 to achieve
delivered systems

support require-

system life~cycle
As the software
product passes through several distinct phases in its evolu-

maintenance prospects can De enhanced if adequate at-

~0 meet this

Figure 4.2 4degpicts the 1life-cycle as a siaple
phase-to-phase flow diagram, joined by critical traansition
points where it can be ascertained that the required main-
tainability objective has been achieved before tramnsition to
the next phase. These transition points are denoted in the
figure as major achisvement milestones. Each phase coampris-
s saveral areas ¢f managesent endeavor in which the corsid-
sration of <the systeam maintainability is essential to the
attainment of milestone objectives. The software product is
re-examined at each milestcne to determine the future course
based on progress up to that point. As each milestone ob-
jective is met, wmaipntainability becomes progressively aore 1

“angible as a built-in feature of desigrn. Maintainabilicty |

nilestone requirements are summarized in the figure.
Milestone criteria can best be satisfied by syste-
matic application of approved procedures in the perforaance
of evaluation, wmanagement, and contrcl tasks which are
jeared directly to specfic objectives ¢f individual mile-
stones in *~he life-cycle. A basic approach to maintainabil-
ity achievement as an evclutionary phase-to-phase fgrowth!?

procass is shown in figure 4.3.

91

Operational [{===-c---cccecorcccccecmnrccccncooe ~==-=
zs1nirement =

! 151
JEUR. S, SRR, SIS
Concept| = se—m—= - === - ==== - lServicel
{gggg; {1 Designi> |2 |Codejd>|3r>|TestpPP 4P| use |

Concept Foramulation Phase Milestone Criteria. Maintain-
ability requirements derived; maintepance concept estan-
lished; wmaintainability documented in system specirtica-
~ions; waintainability amilestones and task requireaencs
documented,

(1) Proceed “o design phase.

Design Phase Milestone Criteria. Maiantainability design
approach and maintepanceé concept optimized by tradeoff and
conformance to,sgeg;fled_requlremgnts and economic coansid-
erations; maintainability <requireaments and wmilestone
criteria updated.

{(2) Proceed to code phase.

Code Phase Milestone Criteria. Conformance tc specified
maintainability requirements and maint¢nance concepts ver-
ified by evaluation; wmaintenance control procedures de-
fined in support documentation.

(3) Proceed to test phase.

Test Phase Milestone Criteria. Maintainability degrada-
tion factors verirfied by test and evalution; mairténarnce
concepts, rerair policies, and maintenance procedures
are verfied.

(4) Software product is approved for delivery.

Service Use Phase Milestone Criteria. Maintainability
characteristics, maintenance prodecures, and Support ¢osts
determined by _periodic assessment ¢f @management data;
problem areas idéntified for correction.

45) Initiate change_ request product enhancement or 2aew
evelopment; repeat llfe-cycie.
Pigure 4.2. Maintenance Milestones in the Systeam bife-cycle

3. CCNTROL CCNCEET

The objective of this <thesis was to develecp a

methedology for arriving at a good predicticmn of pure

92

RN

TASK AREA

Determine
Maintain-
abilicy
Require-
ments

Specify

maintain-
apility

require-
aents and
milestone
criteria

Achieve
specified
majintain-
ability
in design

Show ade-
qugcg of
maintain-
ability in
develop-
ment

Achieve
optimunm
mainte-
nance

suppor+

BEvaluate

naintain-
ability

a*t service
level

CF

CF | DI C|T] s

O Bstablish M policies

O Derive M requireaents

° Optimize M %o relia-

* * bility, availibility,
and_supportability

9 Evclve conceptual
design criteria

° Define M requirements

9 Define ¥ milestone
criteria and task

* * * x Tequirements in .
régram documentation

9 SpeCifically outline
foregoing réquiremen:s
in contractual
documents

9 Identify and define M
prcblems and critical
areas]

9 Integrate M enhance-

* x * ment into design

° Verlr¥ desigr ¢onform-
ance to specific
requirements

0 Review impact of gro-
osed changes on 4
esign characteristics

9 Prepare detailed plans
for maintenance test

© Demonstrate adequacy
of maintenance mapuals

9 Develop maintainence
plan, repaic policies,
and procedures

» > * * |= 9 Develop maintenance
training prograa

© Prepare contfactor
support plan

© Verify conformance to
M requirements unaer
service conditions

* 0 Verify adesquacy ot
mainténance support
manuals .

9 Evaluate skill
requirements and
adéquacy of training

program
= Concept Formulation L = Design
Code I = Test

C
S

Figure 8.3,

Service Use
Maint2nance Tasks in the System Life-cycle

93

maintenance costs. Cetermining the requirements for pure
maintenance is considered valuable in that

1) estimates can be calculated of the manloading necessary
to form a maintenance support team which is composed of
either in-hocuse or contract augmentation;

2) projecticns can be made for outyear maintenance support
3“% availabzllty of manpower tresources for developmen-
“al work.

Wwith future research, the application of this modsi
may be 2xtended to any software project; however, access and
availabili+y of data precluded analysis of small and mediunm
sized orojects. Cnly data from ®major projects was analyzed
for develcoping a computational algoritanm.

In executing the computaticnal algorithm, both macro
(system) and micro (functional area ccmponent) techniques
are used cecncurrently tc increase the validity of the esti-
nates. An implicit assumption worth =zoting is <that each
method should provide reasonably close estimazes for the
same project. The macro technigue, of course, is based oz
<0%tal systzm characteristics and will prcvide the gross maa-
ning requirements directly. Alternately, <from the micro
zachnique, summation of the decomposed functional areas will

yi2ld the gross manning for the total systenm.

94

2., Model Deriviazien

The data under study vas taken from a large-scale
project reported by USACSC {112] and unpublished data from
“he IBM Space Shuttle Prcgram [113].

a. Macrc Technigue

Using the Rayleigh curve parameters derived by

Norden and Putnam [114, 115]), a method was constructed for
ob*aining “otal <system maintenance requirements applicabls
to the established management strategy. In his early work,
Norden made note of the fact that the &ayleigh curve of a
project profile has a point of inflecticn at which the de-
crease in wutilized manpower slows down in +*he descending

portion of the curve,

1/2
- 3
) t. =(___ “.1)
ip za
where

t = the infl:ction point of the project curve

ip

a = the shape parameter or spread of the curve.

The gecint c¢f infleczion may have amcre signifi-
cance <han originally recognized. If i+ can be shown that

the level of effort for the maintenance rhase reaches a aax-

imum a+* <his point, the manlcading estimate calculated froa

95

AD=A112 801 NAVAL POSTGRADUATE SCHOOL MONTEREY CA 8/%
DYNAMIC PLANNING AND CONTROL OF SOFTWARE MAINTENANCE: A F!SCAL -ETC(U)
DEC 81 J F G6REEN» B F SELBY

UNCLASSIFIED
208 2

an

l O RS g ;5
= ¥
1l 22

i

Il

L2 L e

'

this point can te used as the upper bcund €for maintenance
support. In essence, the current mcdsl suggests a new
mechanisa for datermining the level of maintenance support
required, Gained from the model is the benefit of relating
the vork profile more directly to the intrinsic structure of
the project rrcfile.

To simplify calculations, the precject profile is
normalized with respect to ¢t and y° as shown in figure

d max

4.4, Total life-cycle (K), has a norpalized value of 1.
Based on *this assumption ard using Rayleigh curve relation-

ships, it can be shcuwn empirically that the peak of mainte-

nance effcrt cccurs at the inflecticn pcint.

(y/7y')
max

Y 1=é=~

(0.38 y!)
max

(0.26 y!)
@max
_—
5 2.00 /%
7 d
< t t
d ip im

Pigure 4.4. VNormalized Rayleigh Curve

36

S

Prom the

normalized curve values, the shape

parameter is fcund vith the following relaticnship:

Substi*uting this value of

can be shown

n
phase profile,

<ion,

(project inflecticn
point manning)

]
Y t

ip

or

2quation

]

[]
" 1.73)

n

'
Y (1.73)

this equality has

Substi*uting normalized

(4.2)

a ian the following equation, the

profile is obtained.

inflection point (t) of the project
ip
3 1/2
t. = (-~-) = 1.73 years. (4.3)
ip 22
Manloading regquirements at time ¢t (y*)
ip 1.73

mathematically to be equal to the maximum man-

load (y*) which og¢curs at tne peak (t) of the maintenance
t n

Stated in the format of a mathmatical equa-

the form

(zaximum maintenance
phase manning)

! 4.4
Y, (4.9)
a

values into the Rayleigh (manpower)

2
(=« 05) (1.73)

2(1) (.05) (1.73) e (4.5)

0.38 manyears. (4.6)

a7

»

In order %to calculate maxisum manning for the
main*anance phase, parameters for the maintenance curve must
be defin=d4. Actual time elapsed between the beqginning of the
saintenance phase (to) and the maximum level (tm) is comput~-
2d using empirical data recorded by USACSC. Results from
the USACSC research indicate that the naintenance phase,
which accounts £or twenty percent of the total life-cycle
manpowar (K), begins at approximately 1.3 years normalized
“ime. With *his estimaticn, actual time elapsed (¢t ' can be

e

found by

as

=t ~t = (.43 years. 4.7)
e a o

The spread of the maintenance curve (a) is
[}
determined by subti:tuting the elapsed time value into the
already familiar equacion
1
a = === = 2.71 (4.8)
2(t)
e
The valus cbtained for the shape parameter suggests a curve
Qaving 2 wide spread, an expected characteristic of the
maintenance phase profile curve. Coaputation of the aarx -

manloading for tae maintenance phase iron the basic manpowesr

aquation gives

98

2
=2.71) (.43
2(-2K) (2.71) (.u3)e(.70 (-44) (4.9)

'
! (t)
a

y' = 0.38 = y. (“. 10,
(t) (£,)
n ip

With y" defined to be <the upper boundary for

]
<he maintenance effort, anocther boundary can be identified

as the lowsr limit for maintenance effcret. By dezerzining
the value of the inflection point of the maintenance curve

(=), a ainimum support level can ke fcund froa

3 1/2
t. =(:--\l = .74 years. (4.11)
im za
[}
Converting this time to norzalized time (t)
n
t =t ¢+ (4. 12)
n o is
t = 1.3+ .74 = 2,04 years (4.13)
n

and substituting this value in the nanpcwer equation yields

' = ,25 manyears. 4. 14
Y (2.06) Y ()

The manpovwer loading calculated for the infliec-

-ion point of the wmaintenance phase (t) <closely approxi-
ia

mates the value identified by USACSC as the steady state

level of effort. Es=abhlishing maintenance at <the nininunm

Lavel can be interpreted as a Categery IV policy.
99

b. Micrc Technique
Decomposition, @more comaonrly referred to as the
work breakdown structure (WBS) method, has been a predoai-
nate methodology for estimating manning resources. 4 system
is considered to contain subsystems which are further divid-
23 into smaller hierarchial structures until <the smallest
programing element is reached. once the functional areas
are defined, characteristics (complexity, productivity, er-
LOoT rate, atc.) of each wmust be reviewed to determine the
l2vel of affort needed for maintenance. Appendix A contains
an exanple of a micro-estimating methodology along wita the
sample data used.
3. sample Application
a. Sample Data
Data used for this saample application of <he
control concept was provided by IEM Federal Systems Space
Shuttle Program [116]. The raw manning 3ata is grovided in
Appendix A, The remainder of this section 1s a step-by-stap
exaspl2 of +the computicnal algoritha which implements the

control concept of the proposed amodel.

100

in

vy i i
L)
nax-9
300
200
100
t t t
d ip ia
2roject Curve Parameters Maiptenence Support Level]
(1) Macro technique
t. = 2.5 t. = 4.33
d ip
K = 1343 Y _ = 207 manyears
(4.33)
a = .08 t, = 5.1 years
im
' = 325 ' = 137 manyears
Y max ¥ (5.1 Y
YT~ T (2) Micro technigque
MSB = maintenance Support ,
boundary Yy = coaponent mannihg
c
Boundary_ level established
from analysis of macrc and Zy = 195 manyears
micro estimations. c
(cefer to Appendix A)

Pigure 4.5. Plotted Sample Data

101

b. Computaticnal Algoritha

Stzep 1. Fit the actual budge: data *o a Ray-
leigh curve. Pigure 4.5 shows plotted data <for the Space
Shuttla grograas.

Step 2. Determine maintenance support boundary
lines by calculating th2 inflectior points of both tae pro-
ja2ct profile and maintenance phase curve.

Sktep 3. Deteraine support 1level regquireaments
using micro-estimating technigues,

Step 4. Compare values obtained froa macro and

micro aethods. Anaiyze the dJifferences from an econoaic 1

standpoint based cn wanagement policy.

Szep S. Predict outyear budget requirements for
maintenance/new develcpment contingent on management policy.

C. Management Applications

Althcugh the results shovn here relate to only
one set of Jata, <they are encouraging in the support they
give the model. The sodel presented in this %“hesis could
provide a direct means to 2valuate the impact of curreant and
future management practices on the life-cycle cocst of tane
softvare system. The idea of the development of a mainte-

naacsa trategy coupi2d with <the use cf the coamputational

102

algorithm provides the project manager wvith some powerful
management *tools, While additional research is warrantead,
it is purported that application of the model will prove
2nlighting in *he fcilowing respects.

(M Determzping Maintenance Supngr: Level.
?ra2liainary estipates obtained from inflection point predic-
tors may be used as a starting point for planning workforce
requirements to te drawn from internal assets. Likewise, if
external or contracted support must be procured, evaluations
of submizted bid proposals will be necessary. Although yet
unproven statistically for accuracy, the inflection point
predictors appear to define aaximua (t) and ainimum (t)

ip im
boundaries for maintenance levels.

In accordance with the type of paintenance
s«rategy chosen, a maintenance level boundary can be select-
ed. For example, if a Category IV ponlicy is selected, man-
povwer needs would approach the @inimum boundary. On the
o+her hand, a Category I policy would requirs resources ap-
proximatad by *he omaximum level, With *hese boundaries %o
serve as guidelines, contract proposals can be viewed acre

critically.

103

(2) Forecastipg Resource Distribution. Whether

an internal or exterwal wcrkforce is used, planning and
budgeting estimates of manlcading are usually projected for
jiscrete ¢imeframes. During the maintenance phase of a via-
ble project, <+he workforce in terms of total number Zemaias
stable; however, the work distribution or functional roles
of personnel may change (i.e. programmers may shift froa
maintenance work to development work). Within governmerntal
agencies, *his stability may be at*ributed to fixed contract
levels or established manning levels, neither of which can
be easily changed. Therefore, the management problem be-
comes one consisting not only of how many personnel are
needed, but also hcw can assets best be utilized,

In light of the fact <that the users have
changing requireaments, the issue of workforce allocations
for new research and development aust be considered. Based
on the Rayleigh curve characteristics for a specific project
and using a fixed support level e&nviroament, approxizate
values for worklcad distribution caa be calculated.

By method of iutegration, the proportion of
the +otal support level force that will ke dedicated to pure

maintenance and/cr new development in future timeframes can

104

be calcalateqd. Figure 4.6 illustrates this point using the

sample data. i

8Y
1]
max-+
300 5
200 i
100
t t 1
d ip
t 2
2 -at
I MSB ~ 2Kate it
1
2
6 -at 6
= 207t ’ - 1343e
15 5
= 101 MY (resources availaltle for new develcpament)

Note 1:

¥SB = mainienange sugpor; boundary. In_ this example, _ the
bgundarx 1s established at the prcject profile inflec-
tion go nt. Alternately, the boupdary woulad be estab-
lished to indicate the maanning level of +the painte-
nance workfcrce,

Pigure 4.6. TForescasting Fusure Requiremsznts

Maintenance informaticn gained with cthis
nversight method is twofold. The ssparation of Jdevelopaent

work (enhancemeats, additions, new design) from maisternanca

105

mmmmm —

work (debugging, design error correction) is accomplished,
<hsraby allowing for Letter interpretaticn of the projec:
investaent. The coamparison of the relative proportion of
maintenancs manning versus developmeat manning for reviewing
projec< wviability can alsoc be made. This concept will be
1iscussed rore rfully in tae next section.

(3) Mcpirozipg Cenfigurariop consrol. A pauci-

=y of available data prevents tha comparison of actual and
predicted manpower that is required during <he maintenance ;
nhase. The assumpticn that the maintenance tail is flat or
r2aches a steady state seemingly arose from this lack of in-
formation. It is the authcrs! contention that new releases

2f a software product may, in fact, cause increases in the

naintenance tail cver tinme.

lehman and Belady's [117, 118] research,
discussed in charpter 3, gives strong indications that subse-
quent releases for a software product increase complexity
and the amount <c¢f antigressive (maintenance) work that is
raguirad £or zhe total system. Two inherent characterist-.cs
of the sof+tware product directly affected by a new release
are *he system configuration and <the size of the systen

orokblem space. Froa a prcject profile view, the time period

106

when these new releases cccur is during the paictenance
phas=z. 4ith the assertion that the work allccated to thae
completion of a new release must te considered as a phase
within the project life-cycle, the increase in maintenance
cos*s can be explained.

As the diagram in figure 4.7 indicates, the
changes induced Lty the release phase will cause tae .evel of
maintenance to increase. Unless carefully aonizcred, <ach
naw C2lease may cause an increase in the mainterance re-
juir=2ments until the original wmaximum maintenance support
level is resached cr exceeded. When this occurs, management
is forced to make a cost-benefit assessment of the software
systen.

Using the concepts introduced earlier (io-
flection pcint predictors and resource distributicn <fore-
casting), maintenpance saturation of the sorftware systea can
be datected. The support line obtained £rom the inflection
point predicter (tip) serves as a guideline for total systenm
saturation., Management policy sets forth limits for corres-
ponding maintenance and/cr development expenditures which
establishs a budget saturation level. These saturation

l2vels may be eoqual cr different. IR an attempt to preclude

107

Yy/y!
o

Y'
max

y/y!

Note 1
MSB =

SSL =

BSL =

NORMALIZED PROJECT PRCFILE

ax
1=~
MSB =SSL or BSL
A |
7077 V/7 777/ 77T 7777
t <.
4 ip
RELEASE CYCLE

max
Release 1 /////,éase\z"*"
T/t

maintenance support boundary

syst:m saturaticn level, s2squivalent to curve inflec-
“icn oint whers _any maintenance altove this level
would ke ccnsidsred antigressive

budget saturation level, established by management
where 20551h1e values may be:

8SL = SSL

BSL < SSL

BESL > SSL

Pigure 4.7. New Release Effect on Maintenances Level

108

2xcessive maintenance costs, <the saturation lavel viewed as
domirant ‘s used to trigger management's a*ttenticn toward a
systam rabuild. For the subsequent rTebuilt system, a new
Rayleigh curve is plctted and a new cycle of planning and

corntol begirs.

C. CHAPTER SUMMARY

Presented in this chapter is a pilevel model for marag-
ing software maintenance costs. The model, compcsed of both
a planning concept and a control coancept, suggests that tae
creation of a management strateqy will have far-reaching ef-
facts in the system total life-cycle ccsts. Used concur-
rantly, the two modsl concepts allow fcr smoother tramsia-
=ion of maintenance objectives between the strategic

planning la2vel ard the operational contzol level.

109

PO

Presented in this charter is a susmmary of the thesis,

g2aneral conclusions, and recommendations for further study.

A. SUMMARY

Various amethcdolcogies and system Zactors relating <o
software cost accounting have been reviewed in an attempt to
davelop a cost mcdel fcor the prediction of pure maintenance
costs. The distinction between development costs arnd
mainterance costs is considered necessary in order to pre-
s2nt a realistic picture of the annual expenditures within a
given budget constraint. Without a refined separation of
~hese *wo cost entities, tudget control is a aore difficult
~ask.

Beginning with a broad tackgrourd of what maiaternance is
and is not, Chapter One uncovers the paradox that exists in
obtaining a consensus for a common workiag definition of
maintenance. Different schools of thought within the @mili-
-ary and civilian research fields have produced inconsisea<
rasults when citing the proportion of <the the 1life-cycle
costs attributacle <to total system ccsts. This inconsis-

<ency may be due, in part, to the range of cost types (aew

110

TN e ehadese e i e,

- ; --___mw?ﬂE_'--!!!-...l!n..........--!!..-...----.-.-.-—-—-—'w-‘.
F |

development, pure maintenance, other administrative suppore
activities, etc.) <that exist during the maintenance paase.
Whila some researchers may view each cost type individually,

others consider the maintenance costs tc be an aggregate of

i all a2xpenditures during the maintenance thase.

B In Chapter Two, an overview of the extrinsic and iatrin-
sic <charactistics of a software system which create the
maintanance setting is precvided. It is apparent froam the
derailed discussion of the more salient concepts that the
maintenance issue is not cnly complicated, but also still
somewhat 2lusive. While these concepts have been useful in
2xplaining systenm characteristics and gredicting future be-
havior, they fail to produce a means for direct translation
0 a monetary value,

Although no cost estimation technigque adaptable for aaa-
agement use has Lteen developed sclely fcr predicting mainte~
nance costs, application of software cost estimating schemes

originally intended to evaluate the development phase have

o ada i e

been ex+ended <+c inciude the maintenance chase. Chapter

Three is devotred to a review of varicus models <that nave
been suggested as appropriate for addressing the maintenance
cost uncertainties. The models two avenues for approaching

the issue: o

) a Eotal system ccncept using the Ncrden-Rayleigh curve,
an

2) a dynamic =system philosopay using software evolution
anal 'sis.

Current unavailability of a basic method for adegquately
determining miantenance expenditures and the increasing con-
cern of DOD for the exorbitart funding required to sustain
software system cperations inspired the authors to develop a
flaxibl= management model. Chapter Pour elucidates a plan-
ning and cecntrol moedel which can provide project managers
with additional information to assist in budget planning and
decision making. This model proffers four maintenance stra-
tegiss which may be used ip conjuction with calculated maxi-
mua and minimum saintenance level support boundaries specif-

ic to the project profile.

B. CONCILUSION
While an abundance of research in scftware econoaics and
software engineering exists, very little has been done that

ralates to *the mainternance phase of the software life-cycle.

[

s a ra2sul%, +here is an okvious lack of raw daza available
to analyze *he proposed model for validity and sansitivity.
#ith additioral research, it is believed that the model

presented 1in this thesis will provide a direct aeazs to

112

evaluate the ispact of current and future w@anagement prac-
tices on the life-cycle costs of soitware systems. The com-
bined use of *he simple macroestimating and aicroestimating
*achniques allows ¢the manager <o look at the @maintenance
problem from different perspectives while increasing the
confidance in the projected maintenance costs. Additiopal-
ly, the computation of minimum and saximum levels of effore
for a specific project leads to further diminu<tion of the
problem when management has established a particular mainte-

nance strategy.

C. RECOMMENLDATICAS

It is recommernded that additional work within DCD be ua-
jertaken <+o further <the <research objectives of software
maintanance costs and that this work include the following
actions:

1) adoption cf a standard definition that will distinguish
between maintenance costs and costs incurred ia che
maintenance life-cycle phase;

2) institution of longitudinal research by software sup-
port facilities to collect azaintenance data o be usad
in +he development of @panagement tools with improved
capability;s

3) investigaticn of the usage of additicnal prediction
togls *0 cbtrain a more complete view of +the domain of
sof+ware behavior during the maintenance phase; and

of empirical data tc prcve or disprove the

4) ana S .) > :
ng statement: The more over-oudget and behind
e

tha+ a project is delivered, thé higher sanould
prediction of ersors detected in the Raintenance

113

e

ARRENDIX A
Contained in the following text is a partial sum~
mary of a microestimating tecanique (Matrix Estimation
Process) ottained from IBM Federal Systems Division,
Houston, Texas.
MATIRIX METHOD
Definition: The Matrix Method is a systematic procedure
which can be used to delineate elements of a
sof+ware project and aap them against associat~-
ed ccst elements to arrive at a project esti-
mate.
Things <«ha* can Le accopplished:

0 Lay out project slements

9 Stepwise refine the elements

O Estipaté the elements

9@ subtotal the estimazes by grouping
the elements

9 Total up the group estimates

9 Refine total estimacte

1

i

Use of the M¥atzix Method
1. De%ermine functional elements of projecc.

2. Quantify Maintenance needs based on :

Level = Function Size / ((Productivity) (Complexity)

(Factor) .

J. Consider critical skills, operations support, and man-
agemen* and support.
4. sSummarize for project.

5. Plot with Rayleigh curve.

115

Harzix Estimatjon Process
Lay out a tacle of functional areas of code, reguire-
aents areas, test areas, or functicns to be perforaed.
Using the fcllewing foramulas, calculate ¢he level re-

quir2d %o maintain each functional area or function:

Applica*ions Level (FW Size)/ ((154) (2) (12) ()
FCOS Level (PW Size)/ ((100) (2) (12) (2))
SDL Level = (K Line Size)/((15) (2))
Computer Resource (FEID Hrs #Wk)/ (28)

]

GNEC Verfi. level
SSW Verif. Level
S¥/PL Verif., level
Perf,., Verif. Level

(Nuaber Test Cases. «v30) (2))
(Number Test Cazwmi- 1 (5) (2)
(Number Test Caxe~y ~{{20) (2)
(Number Tes® Casesxi/((5) (2)

All O+thers:
Lavel
TEO Level

(Development or Support Level)/(2)
Requested suppert ievel per site

Look a<+« critical skills to see if <cach functional area
is adequately covered.

Estimate 2rror rate and rate of change to see if level

should be 2altered.

MAIRIX ESTIMAIE SUMMARY®

. Yaint. CPN &
Area Size Level Suppert MES Total
AASD 272918 FW 42.0 12.0 10.0 64.0
CON/QA ————— 5.0 ——- 1.0 6.0
SEC. SUPP ———— 11.0 - ——— 11.0
ASVO 1247 TC 83.5 5.0 15.5 104.0
140.5 17.0 26.5 195.90

®* Matrix Summary represents decomposition of the Space Shut~
tle Program intc major functional areas.]

117

Area
SM
vCo
GNEC
R.A.
P.A.

AASD
MES

Totals

*Notea:

AASD Matrix Estimate Summary *

Code
Size
54880
57145

129918

272918

This table

42,0

illustrates an

CPN &

Suppcrt MES Total
3.0 1.3 11.0
- QB 6.0
4.0 2.8 23.5
5.0 2.6 18.0
——— 05 3-5
— 2.0 2.0
12.0 10.0 64,0

additional decomposition

of a majcr furnctional area into subcomponents.

118

Blotted sample Data

i aY 0---0 project data_points
| #---& support level
1
[}
T wax-s- i
300
¥' = 195
200 Kew —Bom el ow k=l ,
100]
| i Iy [! | I ;
5 1,77 1,78 1/59 1,80 1,81 1/82 1/83
x | (year)
T
PRQJECT CUBRVE PABAMEIERS i
:
'
t = 2'5 .

10.

11.

12.

13.

14.

15,

16'

LIST OF REFERENCES

geggeri £. b g«iefearch. Diregtigns in gogfuare
2chnolo iz tegpationa onferepce cn Software
faaingerin. phoet IBESRDSRICHRN SYRSICEEY Wogdrsrass
Boehm, B., "Scftware and ts Impact: A Quantitative
ggggssment", Datamaticn, v. 19, no. 5, pp. 48-59, May

Baksr, F., and 4ills, H., "Ch.ef Prcgrammer TIToams,” IBM
Sys=zems Jourpal, v. 11, no. 1, pp. 50-73, 1972.

Bo2hm, B., "Seven Principles cf Sofwwars Engineerlng,"
Inforech Stare of the Ar: Rsports: Sofrwarlc EInginéerang
T3chnidques, pp. 77=T13, 1977,

Cheathan Thomas E. The High Costs of Softwars
National'Technical Information Service, 1973. !

DeRoze, B., and Nyman, T., "The Software Life Cycle - A
Management and Technological Challange in_ the
Department of Defense," IEEE Iransactions _ci Softwarse
Zngipeering, SE-4, nc. 4, pp. J09=3T8 July 1978,

Kline, N. B., and Schneidewind, N~N. F., “Life Cycle
Compariscns cf Hardware and Software ua;ntalnabilitx,“
;gégé Natiopnal Reliability Coaference, pp. U“a/3/1-14,

Lehman, J. H#., "How Software Projects are QReally
Managed," Datamation, v. 25, pp. 1138-129, 1979,

Leintz Bennet P., Swanson, 3urton E., and Tcampkins, G.
o "Characteristics & of Application Software
Yaintenance," Ccammunications of ACH, v. 21, no. o, pp.
u66-471, 1978.

Lgons, Michael J., "Salvagin Your Software Asset
(Pools Based Maintepance) ," AFIPS, pp. 337-341, 1981.

¥ills, H. D.,"On the Statistical Validation <f Computer
pPrograms," Froceedings of <cthe Second lInzernational
Conferepce cn ooftware = ZpG-neeIzng, gct.” T T13-75,
PP.<8-37,-1976.

Munson, John B, "Scoftware Maintainakbility: A Practical
ggggern for Life-cycle Costs," COMPSAC, pPEr- 54-59,

Ren=zter, Jchn, II1I, "Maintenance is a Management
Problam ard a Programmer's Ogpportunity," AFIPS, ED.
303-347, 1981,

Yau, _Stephen S., and Collofellc, James S., "Some

Stablllgy Measugegt for ESoﬁtuare naintgnance,"s LEEE
ansacticns on Sortware Engipeerin v. no. .

13308855a594,00 Softeaie Raginserind. V- ©. &

Departaen% cf Defense Directive 5000.29, Mapagemept 2I
gompyter Resources in Major Defepse $ysiens’ 1976
Bogdan, #illiam R., "Life Cycle Support of
é;:bogne An:;fubma:i:edﬂgrta:e Tactical Sthware", LY
Jmpute cfrwaza 2ad Applicazions cornference \
s cat e Tl bt 22331208 senisreacs

0

1

ts

17.

18,

27.

28.

29.

30.

31,

32.

33.

3“.

Kline, N. B., and Schneidewirnd, N. F., "Life Cycle
Comparisons of Hardware and Software Maintairabilil ¥ "
$%§§g Natiopal Reliabilicy Conrerence, pp. 4A/3/1-14,

L2intz Bennet P., Swanson, Burtom E., and Tompkins, G.
s. e "Chaz ac§frlst*cst of _ gggl cat-on aogtuare
arnt2nance camunicatio of AC . no. .
466-471, 199s. RIRACAZ2PNS 0% ak2. ’ + PP
Lvons, Michael J., “Salvagin Your Software Asset

(Yools Based Mainctenance)," AFIPS, rp. 337-341, 1981.
Munsona, Jcha B, "Software Mal nta*aabll ty: A Practical

gggge:n c Lifs-cycle CDSts," COMPSAC, »pP. 54-59,

McClure, Carma L., Man EgR Software Devaiopment arpgd
€inn

Main+® 2pance, Van NostTran ol13 " Tompany, P

Rautter, John, III, “Maintenance is a Management

Eroblem and a Programmer's Opportunicty," AFIPS .
$§3-347,%39e17 °7°9 EP y." APIPS, PP

Yau, S«ephen S., Collofellio, James S., and MacGregor,

M., "Ripple Effact Analysis of Software
Hai nt=nance," g:gggg@;-gb Of CCMPSAL, pp. ©60-65, 1978.
Zelkowitz M. V. cinci gg Software Engineering
and Designm, Erentice- HaII %5

Glass, Robert L., and Nolseux, Ropald A., Scftware
Maintenance Guidebook, Prentice-Hall, 1981,

Boaha, B, W., Brown, Jd. R., and Llipow, M.,

"ouantitactive EvaluatAon of Software JQuality,"
P*oceed“_g cf the 2nd Inte: nat.onal Conference on

SofXware EngineeTing, pp 597-805,°1975. N

Daly, Edmund 8., "Mapagement cf Scftware Developmernt,"
IZEE ransactions 2n Software Engineering, DP.

229-262"'-y°1977

McClure Carma L. Reduciz gggg; Co mpl exltx Througn
Structured Erogram5¢ng, Van % rstrand Reinno

Reutter, Jchn, III, "Maintenance is a uauagement
Problem and a Programaer's Opportunity,™ AFIPS, PP.
343~-347, 1981

McClure, Carma L., Managjng Softwars Development and
Maintsnance, Van Nostranc Reinhold Company, 1981,
Lehman, J. H., "How Sof-=ware roZects are Reauly
Managed," Daramation, v. 25, pp. 118=1.9, 1979.

Nolan, R. L., "Maraging tne Crisis in Data Proce’sing,"
Harvard Busipess Review, v. 57, pp. 115-126, 1979.
DeRnzZe, 3., and Nyman, T., "The Sof+ware Life Cycle - A
Managsmen< and Technoio ical Challange in_ the
Daoa"meﬁ cf Defense," ___g Trapsactions .ch SQfL*¥ars
tadiasscing, SE-4, no. 4, pp. 30U9=3T8 JUuly 1975,
8cadan, dilliam R., “Life Cycle Suppor: oI Navy
Aizhorzne An<tisubmarine Waciare Tactical Sofzwars", IZZE
§31%:-1 7§=:;!ég- azd deplacaraons Cenferscce, 3OV

1o

35.

36.

37.

i8.

33.

;O.

‘42.

“3.

44,

45.

‘6.

47.

hn ot

McClure, Carma L., Managing Software Davelopment and
Maintenance, Van Nostrand Kel nhoI’ Company, .

Reutter, John, III, "Maintepnance 1is a Marnagement

Problenm and a Programmer's OQpportunity,"™ AFIPS .
£832385,299e12 g PP y." AELES, pP

Baur, 8. A., and Birchall, r.h., "uanaglng Large Scale
Software Develogment dlth an Automated fange Cortrol
System,' COMESAC, 19

Da 1V, Edmund B., "uanagemgng of SOfEHa > Devalopament

Transact.cn on oftware ngin=2€rin .
355, PR RESR9%RE sseiizg,” 2.
Glass, Robert L., and_ Noiseux, _Ronald A., Sofzware
Maintenance Guidebook, Preatice-Hall, 1981

Daly, Edmund B., "Management cf Software Davelopaent,
Transactions oD Software Engineering, pp.
22‘3 S242, Ray Y977,

Daly, Edmund B., "Management cf Software Developmen».

IEEE Transactioas onb oftware En er .
3395202, %2y Y9I~ Sofrvare Zndinse PP

Chapin, Ned, “productivity in Scitware Maintenance,"
A?IPS, 1981

DeRoz=2, 8., and Nyman, T., "The Software Life Cycle - A

Janageament and Technoioqlcal Challange zn the

Deoar*ment of Defense," IEZE Izaansactions™ gon Software
T8 July 19785

ngineering, SE-4, no. 4, PP. 309=3

G‘ldersleeve, Thomas R., Successful Data Processiag
Sys:ess Analysis, Frentice-Hall, 1987.

Glass, Robert L., and VNoiseux, Ronald A., Softwars
Yaintsnance Guidebook, Prentice-Hall, 1981.

Le2intz Bennet P., Swanson, Surton E., and Tompkins, 3.

5., ”Charact ~‘st1;s£_ 3 S E -cat%?n 50§tware
aln.erance C.a%anications of AC . Q0. .
466-471, $4s. 4 ’ * PP

Yunson, Jchn B, "Scftware Maintainacility: A Practical
gggce:n for Life-cycle Costs," CCMPSAC, pp. 54-59,

McClure Carma L. ing Software Develogm ot and
Maints réuce, Van NéstranIgieznhoIH Company,

Yau, S%ephsn S., and Collofellc, James S., "S
§~ao*l;Ev aeasugest for Software Halntgnance, I
Iz3fsacsions on Sostéars Enginesria v. no0. 6
3358355293502 digstand. ’ '

Daly, tdaund B., "Hanagemgne of Scitware Development
< o) t¥are erin .
5%5‘2u2:£§£§§%977g§ ep Software Enginesz PP

Glass, Robert and YNoiseux, Ronald A., Sofxuare
Yain+tenarnce Gu;geﬂcok, Prentzce-aall, 1981.

ﬁcclure, Carma L., Man Iétwa & Davelo t azd
Yaintepapce, Van Ncst:ana ?ez ako ompany, 195

122

~

53.

Su.

55.

56.

57‘

53.

63.

6“.

67.

58,

goge bgi; Eevglgpnent antet Report RA%CHTR~7g—200
glilabilty an ainsaina t na anua b
§2243D1255) 2nd Mincajnepalisy Qanageeny Hanyale oY

:orden, . Eeﬁer V., “Usefué tTools for Prgjecz
anagemen apnageme oduction . . tarr
(edl%Ot), PE. g T07T, Pengu%n'?oo?s, fnc. !970.

:ordan, geter Ve, "gsezuﬁ Tools 1for ¢ Pro,ect
anagement, " Mapagemen o) ction A, . Starr
(editory), pp.‘§7%3101,39engu§n gois, fnc, “1970.

doehm, 3. W. Brown, J. R., _and Lipow, 8.,
"Quantita<tive ‘Evaluation of Software Qualicy,"
P;oceegégg cE 3g§ 231d ntgrnat;ona% Conference on
Q¥TWarce Ingihesrifig, pp. DYZ-EUS,

Thibodeau, Rokert and Dodson, E. N., "The Implicatzons
gr+L‘f$cyclﬁ Pgase Interrelgt cnsn*ps Lgr SO:tuare COft
stimatin roceedings ecend ware Lifecycle
Management W§orkshop, 98? 70=77,721 I‘gﬁ§€£T

ic2hman, M. ¥, "law and Conservation in Large Progranm
Ev.ution 1" P;oceedlnﬁu and Softuare Lifecycle

Management WcLksBOT EPe | 185, 217 Xdgust ™ 19755

Belady, L. A. and Lehman, M. #H., "A Model of Large

by]

Program Devclopment," Systeas Jo v. 15 .
5529528 P385¢6°° 1BY Systeas Jouraal. ¢ PP
Lehwman, M. M. and Parr, F. N., "Program Evolution aad
%tf Impgct 2nCSO§tware znglge%rlng "Egroceedzags 2nd
n*ernationa nference o [°) are Engineerin .
35725585 002spe2t7ShERce Qb 3oitwale ERdARSSLind, PP

Riordon, J.

on

b

S. "Ar Evolution Dynamics Model of

Software sgs =13 velcgnent " Work 1n8 Pagar of ztae
€

Software Li Wcrkshop, August 197

e
€
Parr P. N., "An Alternative tc the Rayle.ﬁh Cc
godei tfor Softgage ngelopuen* Effore ‘6
raansactions ! oftware ineer:in v.
532535,2988,. 98 20iziaie :adid ’ ’

Belad L. A. aﬁd Lehman, 4. M., "An Inarodugtion to
Growt! D namlcs Sta ticali computer crmance
Evalu+1on¥ EE. €oa- 13 %Eaaemlc Press"T972‘£"‘“Q"“

Lehman, M. 4., "On Understandxng Laws, Bv.ution, and
Conservation 1in the_ Lar Program Lifecycle," 5
Jouvgal of Systems apd Sof w;ge, ¥ . 1, pp. 2%3- 3,

Lientz, B. F. and Swansoa, E. 5., Software Mainienance
Hanaggégn‘ pp. 67-97, Aédzson-uésiey, ko1 pamm

Romc Air Development Center RADC TR-77-2‘ Softu
St Estimation §__-¥ Study Resu by o)
X'soc ates, Inc., FP. 5-1Q0, “3une 197

Chrysler, E., "3ome Basic Determinants of Coaputer

Bro ramming Productivity," Communcaxzions of the ACN, v.
21 ogPP- g -587, 1978. Y." Colgudcazsons of the ACY,

Johnson, J. "A Workin Meas e of Productivicy,"
Dazama-ion, vo 33, pp. 106210,

123

59,

70.

T1.

72.

73.

T4.

75.

76.

T7.

78.

79‘

80.

81.

82.

83.

8“.

35,

86.

‘als"éuup Cc E- and FellX, Co P-' “A Hethod of
Programaing Measurement ana__Estimation,® BM Syszesm
Joufnal, v.16, pr. S«4=73, 1977,

Wwalstcn, C. E. and Pelix, C. P., "A Method of
pProgramding Heaeuremen% and__Estimation," BM Systesm
Journal, v.16, pp-. 3, 1977.

Lientz, B. P. arnd Swanson, E. B., Softwaze Mairtepapge
Management, pp. 67-97, Addison-wesIey, 1980. -

Boehm, B. W., Brcwun, Jd. R., and Lipovw, u.,

"Oyantitative Evaluaticn of Software Quality,*
P*oceedln the 2rd Integﬁatlona% Conferance on
SGIEd gng;& 2L2iB4, EP-

General Electric Command and Information Systems Repor:

GE- rIS-77CI‘02 FaCtO Softwars Quality by McCall
J. A., Richards, ?° R.f‘aﬁ% FaIT3TE; 8 o =,94," ’

Elshoff, J. L., ™A Review c¢f Softvare Measurement
Studleg at General 2ﬂotors Reseatc% Labcr%;%ries }

e e nd apnua oftwars ifecycie
ggggai% ads . o ﬁsgog op22§72-350934 508 mHaze Lafecycle

-—nu -—

dcCabe, T. J. "A Ccmplex‘ty Measure," IEE“ T%arsgct;ggg
of Soffware Engineering, v. 2, pp. 308-=3

Rabin, M. Q. “Complexity of Coaputations, "
Compunicat ;cg_ of the ACM, v. 20, pp. 625-633, 1977,
Gozden, . D.,"Measuring Improvements in Prograas
Clar1 Y." %EBE Transactiors on Scftware Engineering, v.
8, pp. 19- 15997
Halstsad %. H. Elemegnts of Software Science .
u6-61, Efsevier NortE=MoIland by PR £, PP
Zislis, Paul, "Semantic Deconposition of Computer
Programs; an Aid to Pregranm Testing," ACTA
Informatica, v. 4, pp. 245-209,7 1975.
Halstead, M. H., Elements cf Software Sciance, pp.
46-61, Eisevier North-dolland, 1977.
Halstead 4. H. Elements ¢cf Scoftware Science pP.
46-61, elsevier Vértﬁ'ﬂoxIand, %977. == ‘

McCabe, T. J. "A Complexity Measure," IEEE Iran
of Software Engipneering, V. 2, Pp. 308—320

’
Ottenstein, Linda M., “Quantitative Estin
DAbugq'ng Requirements,” IEEE Iransactions ca Softwa
2ngijsering, v. SE-5, no. - PP UH’STR7'197v.

Bradley, Gordon H., and others, $tructuce aad Errox
Det_gtzon in Ceompuxcr Software, Nav

tes of

al Dostgragduate

Schdo1, 1975, -

Zndras, Albert B., “An Analxsis of Srrors aad Their
Causes In Systems Programs, IEZE Transactions 2B
§97§1222 Epgifeering, SE-1, nol "7, pp. 180-T49, Juns

Goel, Amri: L., "“Software Error Cetection Mecdel Wi«

Applications," The Jou Q St2n 2d Sof+warz, v.
1?'no. 3, pp: 2%3=239 5%9% 9L 2ysrzas 224

124

87'

88.

39.

90.

91.

92'

93.

94.

95.

96.

97.

98.

99.

130.

101,

102,

lewood, Bev, "Thecries of Software Reliarcility: How
Ag; They gngz How %an_ They Be Impgoved," ;ggg

sacticns ca Software Engjirneegr.n v. E-6, no.

52078535085 T9ggicrase dinserald. ’ ’

gtgenspeinﬁ Linda .. I g%ua%titative Estimates of
ebuggin €équirements T sacrions cn Sgoftware
ggg;gee;gng, v. SE-S, no. ?, pp.£%83551i, 1973.
SChngideuind, Ncrman F££ Howard, gi%ber; T'Q 4 ind
Kirchgaessner, 4. Software Error Detection ¥gdels
Vallggzlgg Tests apd ;rog;gg ggg§§§x1 ¥ HEasﬁreg, ava
Post¥graduate ScRool, TI97b.

Schneidewind, Norman F., Apnalysis c¢f Error 2rocesses in
computer Software, Naval Postgraduate School, 1374.

on
by

1O (t+
[=¥e"L4

Taylor Richard N. and Osterveil, Le J., "anomaly
Detection in concurrent Sortware Static Flow

Analysis," IEEE T sactions on oftwWare Engineeri
TAgSES n LEEE TIADSECLIghs QU 39it¥ale ERdidesiild.

Yau, Stephen S., and Collofello, dJames 3., "Some
%tabxlity aeasugegt for ESoftuare nalntgnance,"6 IEEE
rTansacrions o oftwa pgipeerin v. no. .
5“5:55275793073 Le €ering, ’ ¢ PP

Schneidewind, Ncrman F., Apalysis ¢f Error pProcesses in
Computer Soffwars, Naval FOStg:aHuate'§cho§, 13

Lit*lewood, Bev, "Theories of Software Reliability:
good A{g They an%t How Can, 22%{ Be Impggvgd," I
rapsacticns con Software Eng n v. £- Ro.

152033555685 Y8pp0ituane Endibsering. ’

Jtu &

ZE
5%

Bradlay, Gcrdon H., and others, Structure and Ecroc
De*ection _ip Computer Softwarg, Navai Pcstgraguate

SCRoo1, " 197S%
Goel, Amrit L., "Software Error Detection Modei With

Applications,” The Journal of stems and Sof:ware v.
P25 ons " 132] §UERgg, 98 Systens and Sofivare,

Littlevocd, Bev, "Thecries of Software Reliatbility: How
Good Are They and Hew Can, They Be Improved," IZEE
Iransactions on sSoftware Enginesriag, v. SE-6, 10. 5,
pp. 389-500, T98T"

Schneidewind, Norman F., Howard, Gilbert 7., and
§ii¢39§¢ssn§:.t H-:d P§9§£!2£§ §£§Q£.tgeteCté22 ﬂQ%Qléi
alzdatio ests a ogram complexi Jeasures ava

Pﬁsfﬁfﬁaﬁgt3'56506§7 157%%" =Q0BlLYatY 22a3lESS,
Schneidawind, ¥Yorman P., Anaiysis ¢f Error 2rocssses ia
Compw*ter Sgofzwars, vaval PSsTgTEiuate 3ChooIS T0TL.

Endres, Alrert B., "An Aralysis cf Erzors and Their
Causes In Systems Frograas,® IEEE Tzasjsactions oo
Sofzware Engipeeripg, v. SE-1, no. 2, pp?'TEU=139, June

1975,

Qttenstein, Linda M., "Quantitative <EIstimates

o
Debugging Requirements," IEEE ransactions on 30f:w
ggg;gge'ggg,qv. SE-5, ﬁb.;5%-PP$“%3Rg§1%7‘1973.2'1"3;

Mo+«ley, R. W. and Brooks, W. D., Statistical Predictio
ggvgggéggggigg ELIQJLS, "Rome Aif PDevelopment %enter

o e

. i

1.5

<-‘--"--.-....----'....-.--‘-'.-'-ﬂ-—n!m—'__-‘

103. Ottenstelin, Linda M., "Quantitative Estimates of
Dabugq*ng Kequicements,” 1 EE Tgansact o S on Sogfrware
Bnginsering, v. SE-5, fo. p 979.

104. Putnam Laurence crial - Software Qs:t
Estimafin ag § gg-C; %e CO'fr.;- “’Es__zis gsﬁg
Sottware .smﬁgxs. E 9

105. Pu%nam Lavwrence He Tytorial - Softvware Cost
SSt;ma{ and Life~-C cleB Control: ée ting the

Soffware §gmﬁ“rs, IZEE,TT980. "

106. Department of the Army DA Paaphlet No. 18-8, A So
Rasourca Macroestimpating Procedure, February 1977,

al

39

— - - e

Thomas H. and Womnnacott, rRon

107. Wonnacott
A Secord Course Ipn Staristics, PE.

108. Belady, L. A. and Lehman, M. 4., "A Model oI Large
Program Development," IBM Systems Jcurnal, v. 15, pp.
225-252, 1976.

109. Lehman, 4. 4. and Parr, F. N., "Frogram Evolution and
I+s Impact on Software Engineering," Proceedings 2nd

3te at‘onal Conference on Software EDQIDeer-L PP
$855532523034, 50055080 o0 3oLr¥ale £B4idsslzad, PP

110. Parr F. N., “An Alternative tc the Rayleigh Curve
sodel for Softvare Development Effor+,” IEEE
Eran 1on= gg Software Engineering, v. 6, PP

111. Parr, PF. N., "An Alternative toc the Rayleigh Curve
godel ‘f SOftgaE%war ngelopmeng Ef;ort,g ;%gg

ransactic on Q € En eeri . .
25%2585:49980.2 Baipsernd. ‘

112. Depar*<ment cf the Army DA Paamphlet No. 18-8, A Software
Besource Macroestimating Procedure, Pebruary T977

113. Rone Kyle a. Space shuttle Software Briefi IBM
Fodefal ' Systems o DiviSien, —oHuston.Tire 0o’ 1980.
(anpublished)

114, ;ord=n, . ﬁeger v.., . "gsefué Tools ufox: . Ptgject
anagement pagemen Q roduction o . tarr
(a3geE oty Hanaaenent, BT TEORESHE%R e " < 1990

115, :u}nam, Lawrence ‘fH'é lggggg;g; l- Software Cos:
Bstimatia -Cvcle ontrol: ett: the
df’ha;_ %ngE*s, %ﬁE%,’%YBU. T 284 a2

116. Rone, Kyle A. Space Shur:le sof:iwacze 3riefiag, I3H

ision, duston,Tx., 1980.

FPaderal és*ems Civ
(unputlishe

"7. gelag ’ g' a. and Lih:an, . u., "AntInt:oduCtzon 2o
roy namlcs a a gter 0 an
Sraticionymanicsey ;873543504 . pRaRYteg Bontommance

118, Lehman, ¥4, M., "On Understanding Lawvs, Pv.ut*on, ana

Conservation 1in the Large Program_ Lifecycle The
Jgagnal of Systess and Soffsaze, v. 1, Pp- $13-2385
h .

1.6

INITIAL DISIBIBUTION LIS

No. Copies

1. Defense Technical Information Center 2
Cameron Station .
Alexandria, Virgicia 22314

2. Def2nse Logistics Studies Information Exchange 2
U. S. Army Lcgistics_Management Center
Fort Lee, Virginia 23601

3. Library, Code 0142 2
Yaval Postgraduate School
Monterey, California 93940

4. Department Chairman, Code 54] 1
Department of Administrative Sciences
Naval Postgraduate, School
Mconterey, Caiifornia 93940

5. Department Chairsan, Cecde 52 2
Departaent of Computer Scieace
Naval Pestgraduate School
Monterey, California 93940

6. DOr. Lyle A. Ccx Jr., Ccde 52CL 4
Department of Administrative Sciences
Naval Pcstgraduate Schoeol
Monterey, California 93940

7. <Lr. Danial C. Boger, Code 54BK [
Department of Adminlstrative Sciences
¥aval Postgraduate School
Mcnterey, Califcrnia 93940

8. Dr. Michael G. Scovereign Code 5520 1
Department of Operations_ Research
Naval Postgraduate_School
Monterey, California 93940

9. LCDR Ronald Modes Code 52MF 1
Departaent of Computer Science
Naval Postgraduate School
Yonterey, Califcrnia 93949

10. COR M. L. Sneiderman, SC, USN, Code 5422 1
Department of Administrative Sciences
Naval Postgraduate Schcgol
Monterey, California 93940

11. Dr. H. H. Locmis, Code 62LM 1

Department of Electrical Engineering
Yaval Postgraduate School
don*erey, Califoraia 93940

127

12. Captain Blair R. Vorgang, USMC 1
Headquarters, Uni<ed States ¥arine Corp (CCP)
Washington D. €. 20381

3. CDR Sullivan, USN, G6O . 1
Headquar+ers, Commander Naval Sscurity Group
3801 Nebraska Avenue
Washington D. C. 20381

14, Mr. Fay Rich G60 . 1
Headquartsrs, Ccamander Naval Securizy Group
3801 Nakraska Avenue
#ashington 0. C. <0381

15. Mz. Kyle ¥, BRcne L 1
BM Federal Systems Division

322 Space Patk D:%ve

ouston, Texas 77058

15. Mt. Williawm Leary i R
ffice of Secretary of Pefense for Data Automation
ha Pentagen

ashiagton D. C. 20381

17. Mr. lawvrence H. Putnan]
?uantztatzve Ssoftvare Management, Isnc.
057 Waverly way
dclLean, Virginia, 22101

18. LCDR Dani=l. J. Devescovi, CEC, USN 1
g. Sé Navy Pubklic #orks Center
ox
?P0 San Framcisco, Califorrnia 96651

19, Dr. Norman F. Schpeidewind, Code 54855 1

Departsent of Administyrative Sciences
Naval Pcstqraduate Schgol
Ycnterey, California 93940

20. LCDR James P. Green . 2
Yaval Security Group_Activity, EBox 102
Homestead, Plcérida 33039

21, LT. Brznda P._ Selry , 2
Yaval Regional Cata Automation Center, San Francisco
Alameda, Califoraia 94501

1.8

